Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 36(49): 15153-15161, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33270454

RESUMO

Amine-terminated self-assembled monolayers are molecular nanolayers, typically formed via wet-chemical solution on specific substrates for precision surface engineering or interface modification. However, homogeneous assembling of a highly ordered monolayer by the facile, wet method is rather tricky because it involves process parameters, such as solvent type, molecular concentration, soaking time and temperature, and humidity level. Here, we select 3-aminopropyltrimethoxysilane (APTMS) as a model molecule of aminosilane for the silanization of nanoporous carbon-doped organosilicate (p-SiOCH) under tightly controlled process environments. Surface mean roughness (Ra) and the water contact angle (θ) of the p-SiOCH layers upon silanization at a 10% humidity-controlled environment behave similarly and follow a three-stage evolution: a leap to a maximum at 15 min for Ra (from 0.227 to 0.411 nm) and θ (from 25 to 86°), followed by a gradual decrease to 0.225 nm and 69o, finally leveling off at the above values (>60 min). The -NH3+ fraction indicating monolayer disorientation evolves in a similar fashion. The fully grown monolayer is highly oriented yielding an unprecedented low -NH3+ fraction of 0.08 (and 0.92 of upright -NH2 groups). However, while having a similar thickness of approximately 1.4 ± 0.1 nm, the molecular layers grown at 30% relative humidity exhibit a significantly elevated -NH3+ fraction of 0.42, indicating that controlling the humidity is vital to the fabrication of highly oriented APTMS molecular layers. A bonding-structure evolution model, as distinct from those offered previously, is proposed and discussed.

2.
PeerJ ; 8: e9351, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566412

RESUMO

Epiphytic bryophytes (EB) are some of the most commonly found plant species in tropical montane cloud forests, and they play a disproportionate role in influencing the terrestrial hydrological and nutrient cycles. However, it is difficult to estimate the abundance of EB due to the nature of their "epiphytic" habitat. This study proposes an allometric scaling approach implemented in twenty-one 30 × 30 m plots across an elevation range in 16,773 ha tropical montane cloud forests of northeastern Taiwan to measure EB biomass, a primary metric for indicating plant abundance and productivity. A general allometry was developed to estimate EB biomass of 100 cm2 circular-shaped mats (n = 131) with their central depths. We developed a new point-intercept instrument to rapidly measure the depths of EB along tree trunks below 300 cm from the ground level (sampled stem surface area (SSA)) (n = 210). Biomass of EB of each point measure was derived using the general allometry and was aggregated across each SSA, and its performance was evaluated. Total EB biomass of a tree was estimated by referring to an in-situ conversion model and was interpolated for all trees in the plots (n = 1451). Finally, we assessed EB biomass density at the plot scale of the study region. The general EB biomass-depth allometry showed that the depth of an EB mat was a salient variable for biomass estimation (R 2 = 0.72, p < 0.001). The performance of upscaling from mats to SSA was satisfactory, which allowed us to further estimate mean (±standard deviation) EB biomass of the 21 plots (272 ± 104 kg ha-1). Since a significant relationship between tree size and EB abundance is commonly found, regional EB biomass may be mapped by integrating our method and three-dimensional remotely sensed airborne data.

3.
Nanoscale Res Lett ; 9(1): 654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520601

RESUMO

In this study, we applied a metal catalyst etching method to fabricate a nano/microhole array on a Si substrate for application in solar cells. In addition, the surface of an undesigned area was etched because of the attachment of metal nanoparticles that is dissociated in a solution. The nano/microhole array exhibited low specular reflectance (<1%) without antireflection coating because of its rough surface. The solar spectrum related total reflection was approximately 9%. A fabricated solar cell with a 40-µm hole spacing exhibited an efficiency of 9.02%. Comparing to the solar cell made by polished Si, the external quantum efficiency for solar cell with 30 s etching time was increased by 16.7%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA