Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 58(2): 1020-1029, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30628445

RESUMO

Three proton-conductive decorated Keggin-type clusters, {[Cu(debpdc)(H2O)3][Cu(debpdc)(H2O)Cl][PMo12O40]} ·2CH3OH ·1.5CH3CN ·3H2O (1), {[Cu(H2bpdc)(H2O)2Cl0.5]2[PW12O40]}·10H2O (2), and {[Cu(H2bpdc)(H2O)2.5]2[SiW12O40]}·10H2O (3) (where debpdc is diethyl 2,2'-bipyridine-4,4'-dicarboxylate and H2bpdc is 2,2'-bipyridine-4,4'-dicarboxylic acid), were synthesized through electrostatic and coordination interactions between Keggin-type anions and Cu(II) H2bpdc/debpdc complex moieties. Interestingly, in the three complexes, both the H2bpdc/debpdc and the Keggin anion are covalently linked to the Cu2+ ions as polydentate organic and inorganic ligands, respectively. Notably, complexes 2 and 3 are the first examples of the functionalization of a Keggin-type cluster with Cu(II)-H2bpdc complex moieties, thereby providing a pathway to design and synthesize multifunctional hybrid materials with cluster structures based on two building units. In them, the free COOH groups of the H2bpdc ligand can act as both hydrogen bond acceptors and proton carriers. 1 has debpdc ligands with ethoxycarbonyl groups, while 2 and 3 have the H2bpdc ligands with free COOH groups; thus, the three complexes help us to understand the influence of the different substituents on the proton conductivity. The measurement results reveal that 2 and 3 have a high conductivity value of over 10-3 S cm-1 at 100 °C under 98% relative humidity, which is 2 orders of magnitude higher than that of 1 under the same conditions.

2.
Inorg Chem ; 58(1): 446-455, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30540447

RESUMO

Cocrystals and isomers, two well-known unique concepts in supramolecular chemistry, are rarely put together until now. For the first time, we report three unprecedented and interesting cocrystals of twin isomers of coordination polymers (CPs) in situ formed by typical Keggin anions and Cu(II)-4,4'-bis(hydroxymethyl)-2,2'-bipyridine (Cu(II)-H2L) complex moieties. In cocrystals 1-3, the Cu(II)-H2L complex moieties are quadrisupported on Keggin-type anions through W(Mo)-Ot-Cu-Ot-W(Mo) (Ot is the terminal O atom) links in the crystal to form two twin ionic/neutral CPs with a fixed chemical stoichiometry. Cocrystals 1-2 contain ionic isomers as {[Cu1(H2L)(H2O)2]2[P1W12O40]} n n+/{[Cu2(HL)(H2O)2]2[P2W12O40]} n n- for 1 and {[Cu1(H2L)(H2O)2]2[P1Mo12O40]} n n+/{[Cu2(HL)(H2O)2]2[P2Mo12O40]} n n- for 2. Cocrystal 3 contains neutral isomers as {[Cu1(H2L)(H2O)2]2[Si1W12O40]} n and {[Cu2(H2L)(H2O)2]2[Si2W12O40]} n. Cooperation of conformation and hydrogen bond network isomerism of Cu(II)-H2L fragments and tetracoordinated mode isomerism of Keggin anion is perfectly embodied in twin isomers. Moreover, based on hydrogen-bonding interactions, twin isomers are alternately arranged in a 1:1 stoichiometric ratio to give a cocrystal. Complicated accumulation of three types of hydrogen-bonding assemblies in the same crystal may be the reason that they give conductivity values over 10-4 S·cm-1 at 100 °C under 98% relative humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...