Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38893832

RESUMO

This research demonstrates changes in the behaviors and characteristics of sintered bricks while using industrial sludge ash (ISA) and waste glass (WG) as a replacement for clay in the brick manufacturing procedure. Owing to the limited amount of available land in Taiwan, it is becoming increasingly difficult to locate suitable sites for sanitary landfills, which is a common final disposal method for ash that is produced during thermal treatment in sludge factories. To meet the urgent need for land, the final waste disposal must convert this waste into a new resource. This research investigated the feasibility of using general industrial sludge ash waste, due to its abundance and high potential as a raw material in producing bricks. The result of this study shows that the bricks made from ISA and WG under a certain mixture proportion (ISA50%/WG40%/Clay10%) had excellent industrial potentials, such as compressive strength and water absorption rate. However, owing to the wide variety of components from different sources of ISA, the mixture proportion might vary accordingly. This study also analyzed the incineration index, proportion design, and process improvement, as well as investigating the possibility of increasing the total use of sludge ash as a resource. This study shows the potentials of utilizing wastes as raw materials in industrial manufacturing procedures. Therefore, more wastes can be tested and turned into resources in the future.

2.
Chemosphere ; 315: 137640, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36584823

RESUMO

For efficient and synergistic elimination of chlorinated aromatic hydrocarbons (e.g., dioxins and chlorobenzenes) and NOx at low temperatures, a novel VOx-CeOx-WOx/TiO2 catalyst was systemically studied, involving the nano-TiO2 modification and the interaction mechanism between 1,2-dichlorobenzen (1,2-DCB) catalytic oxidation (DCBCO) and NH3-SCR. The VOx-CeOx-WOx/TiO2 performed excellent oxygen storage/release capacity (OSRC) and desirable 1,2-DCB conversion efficiency (95.1-97.4%) at 160-200 â„ƒ via M‒K and L‒H mechanism. The nano-TiO2 modification slightly impaired the 1,2-DCB oxidation to 93.6-96.2% owing to the reduced surface area and Brønsted acidity, while it distinctly enhanced NO conversion and lowered the T50 (from 162 to 112 â„ƒ) and T90 (from 232 to 205 â„ƒ) by improving catalyst reducibility. Based on further synergistic catalysis evaluation and in-situ DRIFT analysis, NO enhanced the 1,2-DCB conversion and complete oxidation capacity of VOx-CeOx-WOx/TiO2 by promoting active oxygen (O2-, O-, O2-) generation and improving 1,2-DCB chemosorption and subsequent oxidation. In detail, the produced HCl and H2O improved the catalyst acidity and promoted the formation of HONO and HNO3. Moreover, their generation not only facilitated the chemisorption of NH3 but also participated in the NH3-SCR via L‒H mechanism. The ensuing problem was the competitive chemisorption among 1,2-DCB, NH3, and their subsequent intermediates. As a result, NH3 had distinct advantages in competing for acid sites and active oxygen species, especially at the higher temperature, resulting in the improved NO conversion with elevated reaction temperature but the reduced 1,2-DCB conversion. The results provided essential basics for developing new catalysts to synergistically control the emission of chloroaromatic organics and NOx at low temperature.


Assuntos
Amônia , Hidrocarbonetos Clorados , Temperatura , Temperatura Baixa , Oxirredução , Catálise , Espécies Reativas de Oxigênio
3.
Enzyme Microb Technol ; 143: 109697, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33375983

RESUMO

Magnetic nanoparticles bound with glutathione (GSH) are useful for diagnostics, enzyme immobilization, and affinity precipitation by using the strong and specific interaction of GSH with glutathione S-transferase (GST)-fused proteins. Our studies revealed that GSH-bound magnetic nanoparticles could be obtained using the covalent bond linkage of GSH and nanoparticles to promote the stability of bound GSH. To yield this conjugate, superparamagnetic iron oxide nanoparticles (SPIONs) were prepared and modified using tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES), which introduced amino groups that were then activated with maleic anhydride (MA) for covalent binding of GSH. After MA was used to activate the amino-grafted SPION for 24 h, the yield of GSH conjugation increased over 4 days from 37 % to 74 % of the original amine density on the surface as the incubation of GSH with MA-activated SPION. These GSH-bound magnetic nanoparticles, designated as SPION@silica-GSH with approximately 103 nmol GSH/mg particles, were ready for coupling with GST-fused protein through the GSH-GST affinity interaction. A GST-tagged small fragment of ubiquitin-like-specific protease 1 (sfULP1) was used as the model protein for immobilization on SPION@silica-GSH. ULP1 is a small ubiquitin-like modifier (SUMO) protease. Results indicated that this immobilized GST-sfULP1 could retain 87 % ± 5 % enzyme activity of free protease before immobilization and could catalyze the cleavage of the SUMO-fused peptide (SUMO-GLP-1) to obtain glucagon-like peptide-1, a peptide hormone for type 2 diabetes therapy.


Assuntos
Diabetes Mellitus Tipo 2 , Nanopartículas de Magnetita , Glutationa , Glutationa Transferase , Humanos , Peptídeo Hidrolases , Ubiquitinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...