Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(8): e1012399, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39173070

RESUMO

Circular RNAs (circRNAs) play vital roles in transcription and translation. Identification of circRNA-RBP (RNA-binding protein) interaction sites has become a fundamental step in molecular and cell biology. Deep learning (DL)-based methods have been proposed to predict circRNA-RBP interaction sites and achieved impressive identification performance. However, those methods cannot effectively capture long-distance dependencies, and cannot effectively utilize the interaction information of multiple features. To overcome those limitations, we propose a DL-based model iCRBP-LKHA using deep hybrid networks for identifying circRNA-RBP interaction sites. iCRBP-LKHA adopts five encoding schemes. Meanwhile, the neural network architecture, which consists of large kernel convolutional neural network (LKCNN), convolutional block attention module with one-dimensional convolution (CBAM-1D) and bidirectional gating recurrent unit (BiGRU), can explore local information, global context information and multiple features interaction information automatically. To verify the effectiveness of iCRBP-LKHA, we compared its performance with shallow learning algorithms on 37 circRNAs datasets and 37 circRNAs stringent datasets. And we compared its performance with state-of-the-art DL-based methods on 37 circRNAs datasets, 37 circRNAs stringent datasets and 31 linear RNAs datasets. The experimental results not only show that iCRBP-LKHA outperforms other competing methods, but also demonstrate the potential of this model in identifying other RNA-RBP interaction sites.


Assuntos
Algoritmos , Biologia Computacional , Aprendizado Profundo , Redes Neurais de Computação , RNA Circular , Proteínas de Ligação a RNA , RNA Circular/genética , RNA Circular/metabolismo , Biologia Computacional/métodos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Humanos , Sítios de Ligação/genética
2.
Front Genet ; 13: 896884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783280

RESUMO

Attention convolutional neural networks (ATT-CNNs) have got a huge gain in picture operating and nature language processing. Shortage of interpretability cannot remain the adoption of deep neural networks. It is very conspicuous that is shown in the prediction model of disease aftermath. Biological data are commonly revealed in a nominal grid data structured pattern. ATT-CNN cannot be applied directly. In order to figure out these issues, a novel method which is called the Path-ATT-CNN is proposed by us, making an explicable ATT-CNN model based on united omics data by making use of a recently characterized pathway image. Path-ATT-CNN shows brilliant predictive demonstration difference in primary lung tumor symptom (PLTS) and non-primary lung tumor symptom (non-PLTS) when applied to lung adenocarcinomas (LADCs). The imaginational tool adoption which is linked with statistical analysis enables the status of essential pathways which finally exist in LADCs. In conclusion, Path-ATT-CNN shows that it can be effectively put into use elucidating omics data in an interpretable mode. When people start to figure out key biological correlates of disease, this mode makes promising power in predicting illness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA