Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(7): 411, 2024 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900245

RESUMO

Ratiometric fluorescence and colorimetric strategies for detecting activity of butyrylcholinesterase (BChE) in human serum were developed by using g-C3N4 nanosheets, silver ion (Ag+) and o-phenylenediamine (OPD) as chromogenic agents. The oxidation-reduction reaction of OPD and Ag+ generates 2,3-diaminophenazine (oxOPD). Under exciation at 370 nm, g-C3N4 nanosheets and oxOPD emit fluorescence at 440 nm (F440) and 560 nm (F560), respectively. Additionally, oxOPD exhibits quenching ability towards g-C3N4 nanosheets via photoinduced electron transfer (PET) process. Thiocholine (TCh), as a product of BChE-catalyzed hydrolysis reaction of butylthiocholine iodide (BTCh), can coordinate with Ag+ intensively, and consequently diminish the amount of free Ag+ in the testing system. Less amount of free Ag+ leads to less production of oxOPD, resulting in less fluorescence quenching towards g-C3N4 nanosheets as well as less fluorescence emission of oxOPD. Therefore, by using g-C3N4 nanosheets and oxOPD as fluorescence indicators, the intensity ratio of their fluorescence (F440/F560) was calculated and employed to evaluate the activity of BChE. Similarly, the color variation of oxOPD indicated by the absorbance at 420 nm (ΔA420) was monitored for the same purpose. These strategies were validated to be sensitive and selective for detecting BChE activity in human serum, with limits of detection (LODs) of 0.1 U L-1 for ratiometric fluorescence mode and 0.7 U L-1 for colorimetric mode.


Assuntos
Butirilcolinesterase , Colorimetria , Nanoestruturas , Fenilenodiaminas , Prata , Espectrometria de Fluorescência , Humanos , Colorimetria/métodos , Prata/química , Fenilenodiaminas/química , Butirilcolinesterase/sangue , Butirilcolinesterase/química , Espectrometria de Fluorescência/métodos , Nanoestruturas/química , Compostos de Nitrogênio/química , Limite de Detecção , Nitrilas/química , Grafite , Fenazinas
2.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338959

RESUMO

Hydropericardium hepatitis syndrome (HHS) is primarily caused by fowl adenovirus serotype 4 (FAdV-4), causing high mortality in chickens. Although vaccination strategies against FAdV-4 have been adopted, HHS still occurs sporadically. Furthermore, no effective drugs are available for controlling FAdV-4 infection. However, type I and III interferon (IFN) are crucial therapeutic agents against viral infection. The following experiments were conducted to investigate the inhibitory effect of chicken IFN against FadV-4. We expressed recombinant chicken type I IFN-α (ChIFN-α) and type III IFN-λ (ChIFN-λ) in Escherichia coli and systemically investigated their antiviral activity against FAdV-4 infection in Leghorn male hepatocellular (LMH) cells. ChIFN-α and ChIFN-λ dose dependently inhibited FAdV-4 replication in LMH cells. Compared with ChIFN-λ, ChIFN-α more significantly inhibited viral genome transcription but less significantly suppressed FAdV-4 release. ChIFN-α- and ChIFN-λ-induced IFN-stimulated gene (ISG) expression, such as PKR, ZAP, IRF7, MX1, Viperin, IFIT5, OASL, and IFI6, in LMH cells; however, ChIFN-α induced a stronger expression level than ChIFN-λ. Thus, our data revealed that ChIFN-α and ChIFN-λ might trigger different ISG expression levels, inhibiting FAdV-4 replication via different steps of the FAdV-4 lifecycle, which furthers the potential applications of IFN antiviral drugs in chickens.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Doenças das Aves Domésticas , Animais , Masculino , Galinhas , Interferon-alfa/farmacologia , Interferon-alfa/genética , Sorogrupo , Adenoviridae/genética , Antivirais/farmacologia , Doenças das Aves Domésticas/tratamento farmacológico
3.
J Pharm Biomed Anal ; 240: 115940, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38198882

RESUMO

A ratiometric fluorometry based on silicon quantum dots (SiQDs) and gold nanoclusters (AuNCs) is constructed for detecting activity of butyrylcholinesterase (BChE) in human serum. By using thiobutyrylcholine iodide (BTCh) as the substrate of BChE-catalyzed hydrolysis reaction, variation of fluorescence emission from AuNCs is employed as an indicator of BChE activity since one of the hydrolysis products, thiocholine (TCh), would influence the aggregation state of AuNCs and consequently led to the change of fluorescence quantum efficiency of AuNCs. It is interesting that there are two mechanisms working for the fluorescence emission of aggregated AuNCs: aggregation-induced emission enhancement (AIEE) and aggregation-caused quenching (ACQ) with the presence of TCh at very low and higher concentration levels, respectively. Although both of these mechanisms can be utilized for sensing BChE, their opposite influence on the fluorescence emission of aggregated AuNCs should be worthy of attention, especially in the process of developing fluorescence methods for detecting trace targets by using AuNCs. In order to eliminate the fluctuation of fluorophotometer, SiQDs is chosen as the fluorophore to develop by ratiometric fluorescence methods in this work. Additionally, obvious aggregation of AuNCs induces significant decrease of inner filter effect (IFE) on the fluorescence emitted from SiQDs, while mild aggregation of AuNCs demonstrates little IFE. The linear ranges for detecting activity of BChE are 0.004 - 0.05 U/L and 0.5 - 20 U/L by ratiometric fluorometry based on the AIEE and ACQ, respectively. The very different responses originated from AIEE and ACQ of AuNCs would respectively make their own contributions to the determination of BChE activities at very low or high levels, which facilitate the developments of enhanced or quenched fluorescence methods. However, the detection of BChE activities at medium levels might suffer from the combination of AIEE and ACQ with ambiguous fractions. Therefore, it must be careful during the processes of developing and applying fluorescence methods based on the AIEE and ACQ of AuNCs, as well as the process of evaluating their analytical performance.


Assuntos
Nanopartículas Metálicas , Pontos Quânticos , Humanos , Silício , Ouro , Butirilcolinesterase , Fluorometria , Espectrometria de Fluorescência/métodos
4.
Environ Toxicol ; 39(5): 2623-2633, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38205686

RESUMO

This study utilized middle cerebral artery occlusion (MCAO) mouse models and HT-22 cell oxygen and glucose deprivation/reoxygenation (OGD/R) models to investigate the therapeutic effects of melatonin on ischemic brain injury. In the experiments, MCAO mice were treated with 5 and 10 mg/kg doses of melatonin, and H-T22 cells underwent OGD/R treatment and were administered different concentrations of melatonin. The results showed that melatonin significantly reduced ischemic brain area, neural damage, cerebral edema, and neuronal apoptosis in MCAO mice. In the HT-22 cell model, melatonin also improved cell proliferation ability, reduced apoptosis, and ROS production. Further mechanistic studies found that melatonin exerts protective effects by inhibiting ferroptosis, an iron-dependent form of regulated cell death, through regulation of the ACSL4/CYP1B1 pathway. In MCAO mice, melatonin decreased lipid peroxidation, ROS production, and ACSL4 protein expression. Overexpression of CYP1B1 increased ACSL4 ubiquitination and degradation, thereby increasing cell tolerance to ferroptosis, reducing ACSL4 protein levels, and decreasing ROS production. CYP1B1 knockdown obtained opposite results. The CYP1B1 metabolite 20-HETE induces expression of the E3 ubiquitin ligase FBXO10 by activating PKC signaling, which promotes ACSL4 degradation. In the OGD/R cell model, inhibition of CYP1B1 expression reversed the therapeutic effects of melatonin. In summary, this study demonstrates that melatonin protects the brain from ischemic injury by inhibiting ferroptosis through regulation of the ACSL4/CYP1B1 pathway, providing evidence for new therapeutic targets for ischemic brain injury.


Assuntos
Lesões Encefálicas , Isquemia Encefálica , Ferroptose , AVC Isquêmico , Melatonina , Animais , Camundongos , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Infarto da Artéria Cerebral Média/tratamento farmacológico , Oxigênio/farmacologia
5.
Talanta ; 269: 125418, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988783

RESUMO

Acetaminophen (APAP) overdose, also known as APAP poisoning, may directly result in hepatic injury, acute liver failure and even death. Nowadays, APAP-induced liver injury (AILI) has become an urgent public health issue in the developing world so the early accurate diagnosis and the revelation of underlying molecular mechanism of AILI are of great significance. As a major detoxifying organ, liver is responsible for metabolizing chemical substances, in which human carboxylesterase-2 (CES2) is present. Hence, we chose CES2 as an effective biomarker for evaluating AILI. By developing a CES2-activatable and water-soluble fluorescent probe PFQ-E with superior affinity (Km = 5.9 µM), great sensitivity (limit of detection = 1.05 ng/mL), near-infrared emission (655 nm) and large Stokes shift (135 nm), activity and distribution of CES2 in cells were determined or imaged effectively. More importantly, the APAP-induced hepatotoxicity and the underlying molecular mechanism of pathogenesis of AILI were investigated by measuring the "light-up" response of PFQ-E towards endogenous CES2 in vivo for the first time. Based on the superior performance of the probe PFQ-E for sensing CES2, we believe that it has broad potential in clinical diagnosis and therapy response evaluation of AILI.


Assuntos
Acetaminofen , Doença Hepática Crônica Induzida por Substâncias e Drogas , Humanos , Animais , Camundongos , Acetaminofen/toxicidade , Corantes Fluorescentes/farmacologia , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Fígado , Camundongos Endogâmicos C57BL
6.
Microorganisms ; 11(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38004643

RESUMO

Fowl adenovirus-induced hepatitis-pericardial effusion syndrome outbreaks have been increasingly reported in China since 2015, resulting in substantial economic losses to the poultry industry. The genetic diversity of indigenous chicken results in different immune traits, affecting the evolution of these viruses. Although the molecular epidemiology of fowl adenovirus serotype 4 (FAdV-4) has been well studied in commercial broiler and layer chickens, the prevalence and genetic characteristics of FAdV-4 in indigenous chickens remain largely unknown. In this study, samples were collected from six indigenous chicken breeds in Yunnan province, China. FAdV-positive samples were identified in five of the six indigenous chicken populations via PCR and 10 isolates were obtained. All FAdVs belonged to serotype FAdV-4 and species FAdV-C. The hexon, fiber, and penton gene sequence comparison analysis demonstrated that the prevalence of FAdV-4 isolates in these chickens might have originated from other provinces that exported chicks and poultry products to Yunnan province. Moreover, several distinct amino acid mutations were firstly identified in the major structural proteins. Our findings highlighted the need to decrease inter-regional movements of live poultry to protect indigenous chicken genetic resources and that the immune traits of these indigenous chickens might result in new mutations of FAdV-4 strains.

7.
Front Vet Sci ; 10: 1167444, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065234

RESUMO

Introduction: Newcastle disease virus (NDV) is an important avian pathogen prevalent worldwide; it has an extensive host range and seriously harms the poultry industry. Velogenic NDV strains exhibit high pathogenicity and mortality in chickens. Circular RNAs (circRNAs) are among the most abundant and conserved eukaryotic transcripts. They are part of the innate immunity and antiviral response. However, the relationship between circRNAs and NDV infection is unclear. Methods: In this study, we used circRNA transcriptome sequencing to analyze the differences in circRNA expression profiles post velogenic NDV infection in chicken embryo fibroblasts (CEFs). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal significant enrichment of differentially expressed (DE) circRNAs. The circRNA- miRNA-mRNA interaction networks were further predicted. Moreover, circ-EZH2 was selected to determine its effect on NDV infection in CEFs. Results: NDV infection altered circRNA expression profiles in CEFs, and 86 significantly DE circRNAs were identified. GO and KEGG enrichment analyses revealed significant enrichment of DE circRNAs for metabolism-related pathways, such as lysine degradation, glutaminergic synapse, and alanine, aspartic-acid, and glutamic-acid metabolism. The circRNA- miRNA-mRNA interaction networks further demonstrated that CEFs might combat NDV infection by regulating metabolism through circRNA-targeted mRNAs and miRNAs. Furthermore, we verified that circ-EZH2 overexpression and knockdown inhibited and promoted NDV replication, respectively, indicating that circRNAs are involved in NDV replication. Conclusions: These results demonstrate that CEFs exert antiviral responses by forming circRNAs, offering new insights into the mechanisms underlying NDV-host interactions.

8.
Talanta ; 255: 124226, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580808

RESUMO

A novel nanoprobe was prepared by encapsulating carbon dots (CDs) and gold nanoclusters (AuNCs) into zeolitic imidazolate framework-8 (ZIF-8) for sensitive detecting adenosine triphosphate (ATP). Under excitation at 360 nm, the obtained CDs/AuNCs@ZIF-8 nanoprobe exhibits dual-emissions at 469 nm and 660 nm, respectively, corresponding to the fluorescence emission of CDs and the aggregation-induced emission enhancement (AIEE) of AuNCs. The framework of ZIF-8 in this probe can be degraded by ATP due to the coordination competition of ATP and 2-Methylimidazole towards zinc ion (Zn2+), resulting in the release of CDs and AuNCs. The following dispersion of CDs would improve efficiencies of the fluorescence excitation and the consequent emission of CDs. On the contrary, the AIEE of AuNCs would be decreased spontaneously after the AuNCs originally restricted in ZIF-8 were allowed to escape. The intensity ratio of fluorescence at 469 nm to that at 660 nm (I469/I660) was conveniently employed as the response signal for representing the amount of ATP. This nanoprobe exhibits excellent sensitivity and selectivity toward ATP, with a limit of detection (LOD) of 0.061 µM. Besides, low cytotoxicity of this nanoprobe facilitates its application as a fluorescent indicator in fluorescence imaging of living cells. Encapsulating two types of fluorescent nanomaterials by a degradable ZIF-8 structure makes the ratiometric fluorescence response of the nanocomposite probe towards the target analyte that destroys the ZIF-8 structure possible, and simplifies the application of the probe.


Assuntos
Nanopartículas Metálicas , Pontos Quânticos , Zeolitas , Espectrometria de Fluorescência , Nanopartículas Metálicas/química , Pontos Quânticos/química , Ouro/química , Carbono/química , Zeolitas/química , Cobre , Corantes Fluorescentes/química , Trifosfato de Adenosina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...