Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 253: 121298, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401470

RESUMO

As an important class of disinfection byproducts (DBPs) of emerging concern, haloacetaldehydes (HALs) undergo degradation and transformation under environmentally relevant conditions. In this study, the stability of chlorinated and brominated HALs was investigated at different pHs and water temperatures. Results indicated that the degradation of HALs followed second-order kinetics. Surprisingly, rapid degradation of Br-HALs at elevated temperature was newly discovered in this study. At 50 °C and pH 7.5, over 90 % of TBAL degraded in 8 min, while the degradation of TCAL was ∼1 %. Moreover, increasing pH also facilitated the degradation of HALs and the alkaline degradation rate constants ( [Formula: see text] ) were found to be 7-9 orders of magnitude higher than their neutral degradation rate constants ( [Formula: see text] ). Under conditions relevant to environment and DBP measurement, HALs mainly degraded to form corresponding trihalomethanes and formate via decarburization pathway, which accounted for 70-93 % of HALs loss. The remaining 7-30 % of HAL loss was attributed to the dehalogenation pathway newly proposed in this study, successfully closing halogen balance during HAL degradation. In addition, a quantitative structure-activity relationship (QSAR) model was established for HAL degradation and the degradation rate constants for three mono-HALs were predicted at different temperature. The kinetic models and reaction rate constants obtained in this study can be used for quantitative predictions of HAL concentrations in drinking water, which is beneficial for monitoring and control of these emerging DBPs. Furthermore, considering the rapid degradation of Br-HALs into corresponding products, the temperature during sample pre-treatment can have a significant impact on DBP analysis.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Desinfetantes/análise , Temperatura , Purificação da Água/métodos , Halogenação , Desinfecção/métodos , Água Potável/análise , Trialometanos/análise , Poluentes Químicos da Água/análise
2.
Environ Sci Pollut Res Int ; 29(32): 49322-49334, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35220532

RESUMO

In this study, discarded mushroom-stick, which is widely available, was selected as a precursor to prepare MnO2-modified biochar (MBC) for Sb(III) removal. Several characterisation methods (SEM, BET, XPS, FT-IR, and XRD) were used to explore the mechanisms of antimony adsorption onto MBC. The results showed that MBC is a mesoporous material with a fluffy structure and a higher specific surface area (23.56 and 32.09 m2·g-1) than PBC600 (13.62 m2·g-1), exhibiting superior and stable adsorption capacities for Sb(III) (50.30 mg·g-1 for 1/30MBC600 and 64·12 mg·g-1 for 1/20MBC600) across a wide pH range (pH 4-8). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy analyses indicated that the main oxides and functional groups involved in the adsorption were manganese oxides and hydroxyl groups. Forty-four per cent of the adsorbed Sb(III) was oxidised to Sb(V) by manganese oxides or hydroxyl groups both on the surface of biochar and in solution. According to adsorption kinetics and isotherms, the adsorption process of Sb(III) is chemisorption, which includes monolayer and multilayer heterogeneous chemisorption processes. To sum up, MBC is an excellent adsorbent for the capture of Sb(III) from contaminated water with strong potential for future application.


Assuntos
Agaricales , Poluentes Químicos da Água , Adsorção , Carvão Vegetal/química , Concentração de Íons de Hidrogênio , Cinética , Manganês , Compostos de Manganês/química , Óxidos/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água , Poluentes Químicos da Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...