Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Image Anal ; 87: 102829, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37146440

RESUMO

Susceptibility tensor imaging (STI) is an emerging magnetic resonance imaging technique that characterizes the anisotropic tissue magnetic susceptibility with a second-order tensor model. STI has the potential to provide information for both the reconstruction of white matter fiber pathways and detection of myelin changes in the brain at mm resolution or less, which would be of great value for understanding brain structure and function in healthy and diseased brain. However, the application of STI in vivo has been hindered by its cumbersome and time-consuming acquisition requirement of measuring susceptibility induced MR phase changes at multiple head orientations. Usually, sampling at more than six orientations is required to obtain sufficient information for the ill-posed STI dipole inversion. This complexity is enhanced by the limitation in head rotation angles due to physical constraints of the head coil. As a result, STI has not yet been widely applied in human studies in vivo. In this work, we tackle these issues by proposing an image reconstruction algorithm for STI that leverages data-driven priors. Our method, called DeepSTI, learns the data prior implicitly via a deep neural network that approximates the proximal operator of a regularizer function for STI. The dipole inversion problem is then solved iteratively using the learned proximal network. Experimental results using both simulation and in vivo human data demonstrate great improvement over state-of-the-art algorithms in terms of the reconstructed tensor image, principal eigenvector maps and tractography results, while allowing for tensor reconstruction with MR phase measured at much less than six different orientations. Notably, promising reconstruction results are achieved by our method from only one orientation in human in vivo, and we demonstrate a potential application of this technique for estimating lesion susceptibility anisotropy in patients with multiple sclerosis.


Assuntos
Imagem de Tensor de Difusão , Substância Branca , Humanos , Imagem de Tensor de Difusão/métodos , Encéfalo/diagnóstico por imagem , Substância Branca/diagnóstico por imagem , Mapeamento Encefálico/métodos , Aumento da Imagem/métodos , Algoritmos , Processamento de Imagem Assistida por Computador/métodos
2.
Med Image Comput Comput Assist Interv ; 12262: 125-135, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33163993

RESUMO

Quantitative Susceptibility Mapping (QSM) estimates tissue magnetic susceptibility distributions from Magnetic Resonance (MR) phase measurements by solving an ill-posed dipole inversion problem. Conventional single orientation QSM methods usually employ regularization strategies to stabilize such inversion, but may suffer from streaking artifacts or over-smoothing. Multiple orientation QSM such as calculation of susceptibility through multiple orientation sampling (COSMOS) can give well-conditioned inversion and an artifact free solution but has expensive acquisition costs. On the other hand, Convolutional Neural Networks (CNN) show great potential for medical image reconstruction, albeit often with limited interpretability. Here, we present a Learned Proximal Convolutional Neural Network (LP-CNN) for solving the ill-posed QSM dipole inversion problem in an iterative proximal gradient descent fashion. This approach combines the strengths of data-driven restoration priors and the clear interpretability of iterative solvers that can take into account the physical model of dipole convolution. During training, our LP-CNN learns an implicit regularizer via its proximal, enabling the decoupling between the forward operator and the data-driven parameters in the reconstruction algorithm. More importantly, this framework is believed to be the first deep learning QSM approach that can naturally handle an arbitrary number of phase input measurements without the need for any ad-hoc rotation or re-training. We demonstrate that the LP-CNN provides state-of-the-art reconstruction results compared to both traditional and deep learning methods while allowing for more flexibility in the reconstruction process.

3.
Opt Express ; 20(4): 3572-9, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418117

RESUMO

We propose and demonstrate a novel device structure of resonant cavity-enhanced photodetector (RCE-PD). The new RCE-PD structure consists of a bottom distributed Bragg reflector (DBR), a cavity with InGaAs multiple quantum wells (MQWs) for light absorption and a top mirror of sub-wavelength grating. By changing the fill factor of the 2-D grating, the effective cavity length of RCE-PDs can be varied so the resonant wavelength can be selected post growth. Accordingly, we can fabricate an array of PDs on a single chip, on which every PD aims for a specific wavelength.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...