Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Xray Sci Technol ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38905079

RESUMO

BACKGROUND: The inherent problems in the existence of electron equilibrium and steep dose fall-off pose difficulties for small- and narrow-field dosimetry. OBJECTIVE: To investigate the cutout factors for keloid electron radiotherapy using various dosimetry detectors for small and narrow fields. METHOD: The measurements were performed in a solid water phantom with nine different cutout shapes. Five dosimetry detectors were used in the study: pinpoint 3D ionization chamber, Farmer chamber, semiflex chamber, Classic Markus parallel plate chamber, and EBT3 film. RESULTS: The results demonstrated good agreement between the semiflex and pinpoint chambers. Furthermore, there was no difference between the Farmer and pinpoint chambers for large cutouts. For the EBT3 film, half of the cases had differences greater than 1%, and the maximum discrepancy compared with the reference chamber was greater than 2% for the narrow field. CONCLUSION: The parallel plate, semiflex chamber and EBT3 film are suitable dosimeters that are comparable with pinpoint 3D chambers in small and narrow electron fields. Notably, a semiflex chamber could be an alternative option to a pinpoint 3D chamber for cutout widths≥3 cm. It is very important to perform patient-specific cutout factor calibration with an appropriate dosimeter for keloid radiotherapy.

2.
J Clin Med ; 9(12)2020 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-33260404

RESUMO

This study aimed to compare different types of right breast cancer radiotherapy planning techniques and to estimate the whole-body effective doses and the critical organ absorbed doses. The three planning techniques are intensity-modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT; two methods) and hybrid 3D-CRT/IMRT (three-dimensional conformal radiotherapy/intensity-modulated radiotherapy). The VMAT technique includes two methods to deliver a dose: non-continuous partial arc and continuous partial arc. A thermoluminescent dosimeter (TLD) is placed in the RANDO phantom to estimate the organ absorbed dose. Each planning technique applies 50.4 Gy prescription dose and treats critical organs, including the lung and heart. Dose-volume histogram was used to show the planning target volume (V95%), homogeneity index (HI), conformity index (CI), and other optimized indices. The estimation of whole-body effective dose was based on the International Commission on Radiation Protection (ICRP) Publication 60 and 103. The results were as follows: Continuous partial arc and non-continuous partial arc showed the best CI and HI. The heart absorbed doses in the continuous partial arc and hybrid 3D-CRT/IMRT were 0.07 ± 0.01% and 0% (V5% and V10%, respectively). The mean dose of the heart was lowest in hybrid 3D-CRT/IMRT (1.47 Gy ± 0.02). The dose in the left contralateral lung (V5%) was lowest in continuous partial arc (0%). The right ipsilateral lung average dose and V20% are lowest in continuous partial arc. Hybrid 3D-CRT/IMRT has the lowest mean dose to contralateral breast (organs at risk). The whole-body effective doses for ICRP-60 and ICRP-103 were highest in continuous partial arc (2.01 Sv ± 0.23 and 2.89 Sv ± 0.15, respectively). In conclusion, the use of VMAT with continuous arc has a lower risk of radiation pneumonia, while hybrid 3D-CRT/IMRT attain lower secondary malignancy risk and cardiovascular complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...