Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Skin Health Dis ; 3(5): e270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37799366

RESUMO

Aplasia cutis congenita (ACC) is defined as complete or partial loss or absence of skin at birth and it can occur on any part of the body, but most commonly on the scalp. Single offspring with ACC have been reported in most case reports, but cases in twins are rarely reported. Here, we report two cases of ACC, monozygotic twin boys presented with scattered skin absence over the scalp vertex after birth. All the lesions presented as ulcers with no hair and healed with scars, otherwise, the twins were well developed mentally and physically. In addition, the whole exome sequencing of the twins and their parents might provide diagnosis and classification assistance.

3.
RSC Adv ; 10(64): 39348-39358, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-35518389

RESUMO

Nanobubbles (NBs) are considered to be a new generation of ultrasound-responsive nanocarriers that can effectively target tumors, accurately release multi-drugs at desired locations, as well as simultaneously perform diagnosis and treatment. In this study, we designed theranostic NBs (FTY720@SPION/PFP/RGD-NBs) composed of RGD-modified liposomes as the shell, and perflenapent (PFP), superparamagnetic iron oxide nanoparticles (SPION), and fingolimod (2-amino-2[2-(4-octylphenyl)ethyl]-1,3-propanediol, FTY720) encapsulated as the core. The prepared FTY720@SPION/PFP/RGD-NBs were black spheres with a diameter range of 160-220 nm, eligible for enhanced permeability and retention (EPR) effects. The calculated average drug loading efficiency (LE) and encapsulation efficiency (EE) of the FTY720@SPION/PFP/RGD-NBs were 9.18 ± 0.61% and 88.26 ± 2.31%, respectively. With the promotion of low-intensity focused ultrasound (LIFU), the amount and the rate of FTY720 released from the prepared NB complex were enhanced when compared to the samples without LIFU treatment. In vitro magnetic resonance imaging (MRI) trials showed that the prepared FTY720@SPION/PFP/RGD-NBs had a high relaxation rate and MRI T2-weighted imaging (T2WI) scanning sensitivity conditions. The cell viability studies demonstrated that both HepG2 and Huh7 cells co-cultured with FTY720@SPION/PFP/RGD-NB (100 µg mL-1) + LIFU treatment had the lowest survival rate compared with the other groups at 24 h and 48 h, showing that FTY720@SPION/PFP/RGD-NB had the strongest anti-tumor efficiency among the prepared NBs. The cytotoxicity study also demonstrated that the prepared NBs had low toxicity to normal fibroblast 3T3 cells. Cellular uptake studies further indicated that both LIFU treatment and RGD modification could effectively improve the tumor-targeted effects, thereby enhancing the antitumor efficacy. The qRT-PCR results indicated that LIFU-mediated FTY720@SPION/PFP/RGD-NB could significantly cause the activation of Caspase3, Caspase9 and p53 compared to the control group, inducing HepG2 apoptosis. These results together indicated that FTY720@SPION/PFP/RGD-NBs combined with LIFU may serve as a multifunctional drug delivery platform for hepatocellular carcinoma treatment and provide a new strategy for tumor visualization by MRI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...