Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 10(6): 3813-3824, 2024 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-38779799

RESUMO

Photodynamic therapy (PDT) using aggregation-induced emission photosensitizer (AIE-PS) holds tremendous potential but is limited by its inherent disadvantages and the high concentrations of reduced glutathione (GSH) in tumor cells that can neutralize ROS to weaken PDT. Herein, we designed a nanodelivery system (CM-HSADSP@[PS-Sor]) in which albumin was utilized as a carrier for hydrophobic drug AIE-PS and Sorafenib, cross-linkers with disulfide bonds were introduced to form a nanogel core, and then cancer cell membranes were wrapped on its surface to confer homologous tumor targeting ability. A two-way strategy was employed to disturb redox-homeostasis through blocking GSH synthesis by Sorafenib and consuming excess GSH via abundant disulfide bonds, thereby promoting the depletion of GSH, which in turn increased the ROS levels in cancer cells to amplify the efficacy of ferroptosis and PDT, achieving an efficient in vivo antibreast cancer effect. This study brings a new strategy for ROS-based cancer therapy and expands the application of an albumin-based drug delivery system.


Assuntos
Ferroptose , Oxirredução , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ferroptose/efeitos dos fármacos , Fotoquimioterapia/métodos , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/química , Animais , Espécies Reativas de Oxigênio/metabolismo , Camundongos , Linhagem Celular Tumoral , Glutationa/metabolismo , Homeostase/efeitos dos fármacos , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Camundongos Endogâmicos BALB C , Sistemas de Liberação de Medicamentos/métodos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sorafenibe/química
2.
Pharmaceutics ; 15(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38140129

RESUMO

Antiangiogenic therapy with sorafenib (SF) alone is ineffective in eradicating tumors, and its long-term application can exacerbate tumor hypoxia, which in turn restricts SF's therapeutic efficacy. Here, a redox-responsive fluorinated peptide (DEN-TAT-PFC) consisting of dendritic poly-lysine, cell-penetrating peptide TAT, and perfluorocarbon was designed and synthesized to co-load siRNA-targeting hypoxia-inducible factors (siHIF-1α) and SF. The unique architecture of the peptide and fluorinated modifications enhanced the siRNA delivery efficiency, including increased siRNA binding, GSH-responsive release, cellular uptake, endosomal escape, and serum resistance. Simultaneously, the DEN-TAT-PFC/SF/siHIF-1α co-delivery system achieved efficient knockdown of HIF-1α at mRNA and protein levels, thus alleviating hypoxia and further substantially reducing VEGF expression. Additionally, the excellent oxygen-carrying ability of DEN-TAT-PFC may facilitate relief of the hypoxic microenvironment. As a result of these synergistic effects, DEN-TAT-PFC/SF/siHIF-1α exhibited considerable anti-tumor cell proliferation and anti-angiogenesis effects. Therefore, DEN-TAT-PFC can be a versatile platform for fabricating fluorine-containing drugs/siRNA complex nano-systems.

3.
Drug Discov Today ; 28(8): 103668, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321318

RESUMO

Efficient intracellular delivery is essential for most therapeutic agents; however, existing delivery vectors face a dilemma between efficiency and toxicity, and always encounter the challenge of endolysosomal trapping. The cell-penetrating poly(disulfide) (CPD) is an effective tool for intracellular delivery, as it is taken up through thiol-mediated cellular uptake, thus avoiding endolysosomal entrapment and ensuring efficient cytosolic availability. Upon cellular uptake, CPD undergoes reductive depolymerization by glutathione inside cells and has minimal cytotoxicity. This review summarizes CPD's chemical synthesis approaches, cellular uptake mechanism, and recent advances in the intracellular delivery of proteins, antibodies, nucleic acids, and other nanoparticles. Overall, CPD is a promising candidate carrier for efficient intracellular delivery.


Assuntos
Peptídeos Penetradores de Células , Nanopartículas , Dissulfetos , Proteínas/metabolismo , Anticorpos , Transporte Biológico , Peptídeos Penetradores de Células/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...