Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Mol Mutagen ; 2024 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-38644659

RESUMO

Cataracts are one of the leading causes of blindness, with an estimated 95 million people affected worldwide. A hallmark of cataract development is lens opacification, typically associated not only with aging but also radiation exposure as encountered by interventional radiologists and astronauts during the long-term space mission. To better understand radiation-induced cataracts, the adverse outcome pathway (AOP) framework was used to structure and evaluate knowledge across biological levels of organization (e.g., macromolecular, cell, tissue, organ, organism and population). AOPs identify a sequence of key events (KEs) causally connected by key event relationships (KERs) beginning with a molecular initiating event to an adverse outcome (AO) of relevance to regulatory decision-making. To construct the cataract AO and retrieve evidence to support it, a scoping review methodology was used to filter, screen, and review studies based on the modified Bradford Hill criteria. Eight KEs were identified that were moderately supported by empirical evidence (e.g., dose-, time-, incidence-concordance) across the adjacent (directly linked) relationships using well-established endpoints. Over half of the evidence to justify the KER linkages was derived from the evidence stream of biological plausibility. Early KEs of oxidative stress and protein modifications had strong linkages to downstream KEs and could be the focus of countermeasure development. Several identified knowledge gaps and inconsistencies related to the quantitative understanding of KERs which could be the basis of future research, most notably directed to experiments in the range of low or moderate doses and dose-rates, relevant to radiation workers and other occupational exposures.

2.
Int J Radiat Biol ; 98(12): 1777-1788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939057

RESUMO

PURPOSE: Health protection agencies require scientific information for evidence-based decision-making and guideline development. However, vetting and collating large quantities of published research to identify relevant high-quality studies is a challenge. One approach to address this issue is the use of adverse outcome pathways (AOPs) that provide a framework to assemble toxicological knowledge into causally linked chains of key events (KEs) across levels of biological organization to culminate in an adverse health outcome of significance to regulatory decision-making. Traditionally, AOPs have been constructed using a narrative review approach where the collection of evidence that supports each pathway is based on prior knowledge of influential studies that can also be supplemented by individually selecting and reviewing relevant references. OBJECTIVES: We aimed to create a protocol for AOP weight of evidence gathering that harnesses elements of both scoping review methods and artificial intelligence (AI) tools to increase transparency while reducing bias and workload of human screeners. METHODS: To develop this protocol, an existing space-health AOP in the workplan of the Organisation for Economic Co-operation and Development (OECD) AOP Programme was used as a case example. To balance the benefits of both scoping review tools and narrative approaches, a study protocol outlining a screening and search strategy was developed, and three reference collection workflows were tested to identify the most efficient method to inform weight of evidence. The workflows differed in their literature search strategies, and combinations of software tools used. RESULTS: Across the three tested workflows, over 59 literature searches were completed, retrieving over 34,000 references of which over 3300 were human reviewed. The most effective of the three methods used a search strategy with searches across each component of the AOP network, SWIFT Review as a pre-filtering software, and DistillerSR to create structured screening and data extraction forms. This methodology effectively retrieved relevant studies while balancing efficiency in data retrieval without compromising transparency, leading to a well-synthesized evidence base to support the AOP. CONCLUSIONS: The workflow is still exploratory in the context of AOP development, and we anticipate adaptations to the protocol with further experience. To further the systematicity, future iterations of the workflow could include structured quality assessment and risk of bias analysis. Overall, the workflow provides a transparent and documented approach to support AOP development, which in turn will support the need for rigorous methods to identify relevant scientific evidence while being practical to allow uptake by the broader community.


Assuntos
Rotas de Resultados Adversos , Voo Espacial , Humanos , Inteligência Artificial
3.
Int J Food Microbiol ; 177: 49-56, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24607423

RESUMO

Extraintestinal Pathogenic Escherichia coli (ExPEC) have the potential to spread through fecal waste resulting in the contamination of both farm workers and retail poultry meat in the processing plants or environment. The objective of this study was to characterize ExPEC from retail poultry meats purchased from Alberta, Canada and to compare them with 12 human ExPEC representatives from major ExPEC lineages. Fifty-four virulence genes were screened by a set of multiplex PCRs in 700 E. coli from retail poultry meat samples. ExPEC was defined as the detection of at least two of the following virulence genes: papA/papC, sfa, kpsMT II and iutA. Genetic relationships between isolates were determined using pulsed field gel electrophoresis (PFGE). Fifty-nine (8.4%) of the 700 poultry meat isolates were identified as ExPEC and were equally distributed among the phylogenetic groups A, B1, B2 and D. Isolates of phylogenetic group A possessed up to 12 virulence genes compared to 24 and 18 genes in phylogenetic groups B2 and D, respectively. E. coli identified as ExPEC and recovered from poultry harbored as many virulence genes as those of human isolates. In addition to the iutA gene, siderophore-related iroN and fyuA were detected in combination with other virulence genes including those genes encoding for adhesion, protectin and toxin while the fimH, ompT, traT, uidA and vat were commonly detected in poultry ExPEC. The hemF, iss and cvaC genes were found in 40% of poultry ExPEC. All human ExPEC isolates harbored concnf (cytotoxic necrotizing factor 1 altering cytoskeleton and causing necrosis) and hlyD (hemolysin transport) genes which were not found in poultry ExPEC. PFGE analysis showed that a few poultry ExPEC isolates clustered with human ExPEC isolates at 55-70% similarity level. Comparing ExPEC isolated from retail poultry meats provides insight into their virulence potential and suggests that poultry associated ExPEC may be important for retail meat safety. Investigations into the ability of our poultry ExPEC to cause human infections are warranted.


Assuntos
Escherichia coli/fisiologia , Microbiologia de Alimentos , Carne/microbiologia , Alberta , Animais , Técnicas de Tipagem Bacteriana , Eletroforese em Gel de Campo Pulsado , Escherichia coli/classificação , Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genes Bacterianos/genética , Humanos , Filogenia , Aves Domésticas , Sorotipagem , Fatores de Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...