Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 25(47): 475301, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25369731

RESUMO

Thermally activated redistribution of Si surface atoms is found to be a crucial factor for the growth of aligned Ge dots on pit-patterned Si(001) substrates. A phenomenon of Si accumulation around the edge of pits significantly alters the substrate surface morphology. As the pit spacing is reduced to below 100 nm, a convex morphology developed between adjacent pits causes a chemical potential distribution that drives the Ge dots into the pits. In addition, the pits of an etching depth greater than 60 nm will evolve into truncated inverted pyramids with sharp base corners that provide deep potential wells for the confinement of Ge dots. Perfectly aligned Ge dots are obtained on pit-patterned Si substrates with this range of pit spacing and etching depth. We also find that the initial geometric shape of the pits does not affect the spatial arrangement of Ge dots.

2.
Nanotechnology ; 23(1): 015303, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22155926

RESUMO

We demonstrate the effect of the pre-growth heat treatment process on the nucleation properties of Ge dots grown on pit-patterned Si(001) substrates. The prefabricated 200 nm diameter pits inherently evolve into truncated inverted pyramids (TIPs) with (110) base edges and a 7°-9° sidewall slope during heat treatment; this morphology transformation is robust against variations in shape and orientation of the pit patterns. Uniform Ge dots with an areal density of 4 × 10(9) cm(-2) were obtained on the Si substrates having TIPs. Each TIP contains four aligned Ge dots locating symmetrically with respect to (110). These dots exhibit an elliptical dome shape with major axis oriented along (100). The nucleation position, shape and spatial orientation of these Ge dots coincide with the calculated surface chemical potential distribution of the TIP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...