Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35096100

RESUMO

In order to comprehensively explore multitarget mechanism and key active compounds of Artemisia argyi essential oil (AAEO) in the treatment of pressure injuries (PIs), we analyzed the biological functions and pathways involved in the intersection targets of AAEO and PIs based on network pharmacology, and the affinity of AAEO active compounds and core targets was verified by molecular docking finally. In our study, we first screened 54 effective components according to the relative content and biological activity. In total, 103 targets related to active compounds of AAEO and 2760 targets associated with PIs were obtained, respectively, and 50 key targets were overlapped by Venny 2.1.0. The construction of key targets-compounds network was achieved by the STRING database and Cytoscape 3.7.2 software. GO analysis from Matespace shows that GO results are mainly enriched in biological processes, including adrenergic receptor activity, neurotransmitter clearance, and neurotransmitter metabolic process. KEGG analysis by the David and Kobas website shows that the key targets can achieve the treatment on PIs through a pathway in cancer, PI3K-Akt signaling pathway, human immunodeficiency virus 1 infection, MAPK signaling pathway, Wnt signaling pathway, etc. In addition, molecular docking results from the CB-Dock server indicated that active compounds of AAEO had good activity docking with the first 10 key targets. In conclusion, the potential targets and regulatory molecular mechanisms of AAEO in the treatment of PIs were analyzed by network pharmacology and molecular docking. AAEO can cure PIs through the synergistic effect of multicomponent, multitarget, and multipathway, providing a theoretical basis and new direction for further study.

2.
Exp Ther Med ; 13(5): 1841-1849, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28565776

RESUMO

In our previous reports, it was revealed that steroids in traditional Chinese medicine (TCM) have the therapeutic potential to treat bone disease. In the present study, an in vitro model of a vitamin D receptor response element (VDRE) reporter gene assay in mesenchymal stem cells (MSCs) was used to identify steroids that enhanced osteogenic differentiation of MSCs. (+)-cholesten-3-one (CN), which possesses a ketone group that is modified in cholesterol and cholesterol myristate, effectively promoted the activity of the VDRE promoter. Phenotypic cellular analysis indicated that CN induced differentiation of MSCs into osteogenic cells and increased expression of specific osteogenesis markers, including alkaline phosphatase, collagen II and Runt-related transcription factor 2. Furthermore, CN significantly increased the expression of osteopontin, the target of the vitamin D receptor (VDR), which indicated that CN may activate vitamin D receptor signaling. Over-expression of VDR or knockdown studies with VDR-small interfering RNA revealed that the pro-differentiation effects induced by CN required VDR. Furthermore, the present study determined that the C-terminal region of the VDR is responsible for the action of CN. Taken together, the present findings demonstrated that CN induced osteogenic differentiation of MSCs by activating VDR. The present study explored the regulation of stem cells by using a series of similar steroids and provided evidence to support a potential strategy for the screening of novel drugs to treat bone disease in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...