Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gait Posture ; 108: 63-69, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988888

RESUMO

BACKGROUND: Gait analysis using foot-mounted IMUs is a promising method to acquire gait parameters outside of laboratory settings and in everyday clinical practice. However, the need for precise sensor attachment or calibration, the requirement of environments with a homogeneous magnetic field, and the limited applicability to pathological gait patterns still pose challenges. Furthermore, in previously published work, the measurement accuracy of such systems is often only validated for specific points in time or in a single plane. RESEARCH QUESTION: This study investigates the measurement accuracy of a gait analysis method based on foot-mounted IMUs in the acquisition of the foot motion, i.e., position and angle trajectories of the foot in the sagittal, frontal, and transversal plane over the entire gait cycle. RESULTS: A comparison of the proposed method with an optical motion capture system showed an average RMSE of 0.67° for pitch, 0.63° for roll and 1.17° for yaw. For position trajectories, an average RMSE of 0.51 cm for vertical lift and 0.34 cm for lateral shift was found. The measurement error of the IMU-based method is found to be much smaller than the deviations caused by the shoes. SIGNIFICANCE: The proposed method is found to be sufficiently accurate for clinical practice. It does not require precise mounting, special calibration movements, or magnetometer data, and shows no difference in measurement accuracy between normal and pathological gait. Therefore, it provides an easy-to-use alternative to optical motion capture and facilitates gait analysis independent of laboratory settings.


Assuntos
, Marcha , Transtornos Somatoformes , Humanos , Análise da Marcha , Movimento (Física) , Sapatos , Fenômenos Biomecânicos , Reflexo de Sobressalto
2.
Sensors (Basel) ; 22(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36560219

RESUMO

Human motion analysis using inertial measurement units (IMUs) has recently been shown to provide accuracy similar to the gold standard, optical motion capture, but at lower costs and while being less restrictive and time-consuming. However, IMU-based motion analysis requires precise knowledge of the orientations in which the sensors are attached to the body segments. This knowledge is commonly obtained via time-consuming and error-prone anatomical calibration based on precisely defined poses or motions. In the present work, we propose a self-calibrating approach for magnetometer-free joint angle tracking that is suitable for joints with two degrees of freedom (DoF), such as the elbow, ankle, and metacarpophalangeal finger joints. The proposed methods exploit kinematic constraints in the angular rates and the relative orientations to simultaneously identify the joint axes and the heading offset. The experimental evaluation shows that the proposed methods are able to estimate plausible and consistent joint axes from just ten seconds of arbitrary elbow joint motion. Comparison with optical motion capture shows that the proposed methods yield joint angles with similar accuracy as a conventional IMU-based method while being much less restrictive. Therefore, the proposed methods improve the practical usability of IMU-based motion tracking in many clinical and biomedical applications.


Assuntos
Algoritmos , Articulação do Cotovelo , Humanos , Movimento (Física) , Cotovelo , Articulações dos Dedos , Fenômenos Biomecânicos , Articulações
3.
Front Digit Health ; 3: 736418, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34806077

RESUMO

Walking is a central activity of daily life, and there is an increasing demand for objective measurement-based gait assessment. In contrast to stationary systems, wearable inertial measurement units (IMUs) have the potential to enable non-restrictive and accurate gait assessment in daily life. We propose a set of algorithms that uses the measurements of two foot-worn IMUs to determine major spatiotemporal gait parameters that are essential for clinical gait assessment: durations of five gait phases for each side as well as stride length, walking speed, and cadence. Compared to many existing methods, the proposed algorithms neither require magnetometers nor a precise mounting of the sensor or dedicated calibration movements. They are therefore suitable for unsupervised use by non-experts in indoor as well as outdoor environments. While previously proposed methods are rarely validated in pathological gait, we evaluate the accuracy of the proposed algorithms on a very broad dataset consisting of 215 trials and three different subject groups walking on a treadmill: healthy subjects (n = 39), walking at three different speeds, as well as orthopedic (n = 62) and neurological (n = 36) patients, walking at a self-selected speed. The results show a very strong correlation of all gait parameters (Pearson's r between 0.83 and 0.99, p < 0.01) between the IMU system and the reference system. The mean absolute difference (MAD) is 1.4 % for the gait phase durations, 1.7 cm for the stride length, 0.04 km/h for the walking speed, and 0.7 steps/min for the cadence. We show that the proposed methods achieve high accuracy not only for a large range of walking speeds but also in pathological gait as it occurs in orthopedic and neurological diseases. In contrast to all previous research, we present calibration-free methods for the estimation of gait phases and spatiotemporal parameters and validate them in a large number of patients with different pathologies. The proposed methods lay the foundation for ubiquitous unsupervised gait assessment in daily-life environments.

4.
Sensors (Basel) ; 21(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916432

RESUMO

The orientation of a magneto and inertial measurement unit (MIMU) is estimated by means of sensor fusion algorithms (SFAs) thus enabling human motion tracking. However, despite several SFAs implementations proposed over the last decades, there is still a lack of consensus about the best performing SFAs and their accuracy. As suggested by recent literature, the filter parameters play a central role in determining the orientation errors. The aim of this work is to analyze the accuracy of ten SFAs while running under the best possible conditions (i.e., their parameter values are set using the orientation reference) in nine experimental scenarios including three rotation rates and three commercial products. The main finding is that parameter values must be specific for each SFA according to the experimental scenario to avoid errors comparable to those obtained when the default parameter values are used. Overall, when optimally tuned, no statistically significant differences are observed among the different SFAs in all tested experimental scenarios and the absolute errors are included between 3.8 deg and 7.1 deg. Increasing the rotation rate generally leads to a significant performance worsening. Errors are also influenced by the MIMU commercial model. SFA MATLAB implementations have been made available online.

5.
Sensors (Basel) ; 19(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626130

RESUMO

Objective real-time assessment of hand motion is crucial in many clinical applications including technically-assisted physical rehabilitation of the upper extremity. We propose an inertial-sensor-based hand motion tracking system and a set of dual-quaternion-based methods for estimation of finger segment orientations and fingertip positions. The proposed system addresses the specific requirements of clinical applications in two ways: (1) In contrast to glove-based approaches, the proposed solution maintains the sense of touch. (2) In contrast to previous work, the proposed methods avoid the use of complex calibration procedures, which means that they are suitable for patients with severe motor impairment of the hand. To overcome the limited significance of validation in lab environments with homogeneous magnetic fields, we validate the proposed system using functional hand motions in the presence of severe magnetic disturbances as they appear in realistic clinical settings. We show that standard sensor fusion methods that rely on magnetometer readings may perform well in perfect laboratory environments but can lead to more than 15 cm root-mean-square error for the fingertip distances in realistic environments, while our advanced method yields root-mean-square errors below 2 cm for all performed motions.


Assuntos
Mãos/fisiologia , Monitorização Fisiológica , Movimento/fisiologia , Dispositivos Eletrônicos Vestíveis , Algoritmos , Fenômenos Biomecânicos , Humanos
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1233-1238, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31946115

RESUMO

Inertial Measurement Units (IMUs) are used to track the motion of kinematic chains in a wide variety of robotic and biomedical applications. However, inertial motion tracking is severely limited by the fact that magnetic fields are inhomogeneous in indoor environments and near electronic devices. Methods that use only accelerations and angular rates for orientation estimation yield no absolute heading information and suffer from heading drift. To overcome this limitation, we propose a novel method that exploits an orientation-based kinematic constraint in joints with two degrees of freedom (DoF), such as cardan joints, saddle joints, the human wrists, elbow or ankles. The method determines the relative heading of the joint segments in real time by minimization of a nonlinear cost function. A filter for singularity treatment ensures accurate tracking during motion phases for which the cost function minimum is ambiguous. We experimentally validate the method in metacarpophalangeal (MCP) joints between the palm and the fingers. Accurate relative orientation tracking is achieved continuously despite several singular motion phases and even though the heading components of the 6D orientations drift by more than 360 degrees within ten minutes. The proposed method overcomes a major limitation of inertial motion tracking and thereby facilitates the use of this technology in robotic and biomechanical applications.


Assuntos
Aceleração , Algoritmos , Fenômenos Biomecânicos , Humanos , Articulações , Movimento (Física)
7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 5488-5493, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31947097

RESUMO

Recent research indicates that music-supported therapies may offer unique benefits for rehabilitation of motor function after stroke. We designed an adapted guitar and training task aimed to improve coordination between rhythmic and discrete movements because individuals recovering from stroke have greater difficulty performing discrete vs. rhythmic movements. In this paper, we report a feasibility study on training to play this adapted guitar in healthy young adults. Subjects (N = 10) practiced two rhythmic strumming patterns over three consecutive days using their non-dominant hand guided by an audiovisual metronome (60 bpm). They were also instructed to press a foot pedal while maintaining the strumming movement. Elbow and wrist kinematics were estimated using wireless inertial measurement units. Results showed positive mean asynchrony between strum onsets and metronome onsets, and a decrease in the standard deviation of mean asynchrony over practice. In early practice, participants slowed the strumming movement when they pressed the foot pedal, but this interference decreased on days two and three. Smoothness of the elbow movement during the strum phase, which includes the contact with the strings, increased over practice, while smoothness of the return phase did not change over practice. The predominant joint coordination pattern used for the strum phase consisted of elbow extension coupled with elbow pronation, wrist extension, and ulnar deviation. We discuss how these results fit into current music-based rehabilitation literature and outline directions for future applications of this music-supported intervention.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Estudos de Viabilidade , Humanos , Destreza Motora , Movimento , Música , Reabilitação do Acidente Vascular Cerebral/instrumentação , Punho , Adulto Jovem
8.
IEEE Int Conf Rehabil Robot ; 2017: 971-976, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813947

RESUMO

Inertial Measurement Units (IMUs) have become a widely used tool for rehabilitation and other application domains in which human motion is analyzed using an ambulatory or wearable setup. Since the magnetic field is inhomogeneous in indoor environments and in the proximity of ferromagnetic material, standard orientation estimation and joint angle calculation algorithms often lead to inaccurate or even completely wrong results. One approach to circumvent this is to exploit the kinematic constraint that is induced by mechanical hinge joints and also by approximate hinge joints such as the knee joint and the finger (interphalangeal) joints of the human body. We propose a quaternion-based method for joint angle measurement for approximate hinge joints moving through inhomogeneous magnetic fields. The method exploits the kinematic constraint to compensate the error that the magnetic disturbances induce in the IMU orientation estimates. This is achieved by realtime estimation and correction of the relative heading (azimuth) error that is caused by the disturbance. Since the kinematic constraint does not allow heading correction when the joint axis is vertical, we extend the proposed method such that it improves accuracy and robustness when the joint is close to that singularity. We evaluate the method by simulations of a quick hand motion and study the effect of inaccurate sensor-to-segment (anatomical) calibration and joint constraint relaxations. As a main result, the proposed method is found to reduce the root-mean-square error of the joint angle from 25.8° to 2.6° in the presence of large magnetic disturbances.


Assuntos
Fenômenos Biomecânicos , Articulações dos Dedos/fisiologia , Articulação do Joelho/fisiologia , Campos Magnéticos , Modelos Biológicos , Algoritmos , Simulação por Computador , Desenho de Equipamento , Humanos , Robótica/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...