Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38365889

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a rare neurological condition associated with reactivation of dormant JC polyomavirus (JCPyV). In this study, we characterized gene expression and JCPyV rearrangements in PML brain tissue. Infection of white matter astrocytes and oligodendrocytes as well as occasional brain cortex neurons was shown. PML brain harbored exclusively rearranged JCPyV variants. Viral transcripts covered the whole genome on both strands. Strong differential expression of human genes associated with neuroinflammation, blood-brain-barrier permeability and neurodegenerative diseases was shown. Pathway analysis revealed wide immune activation in PML brain. The study provides novel insights into the pathogenesis of PML.

2.
J Clin Virol ; 171: 105652, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38364704

RESUMO

BACKGROUND: JC polyomavirus (JCPyV) persists asymptomatic in more than half of the human population. Immunocompromising conditions may cause reactivation and acquisition of neurotropic rearrangements in the viral genome, especially in the non-coding control region (NCCR). Such rearranged JCPyV strains are strongly associated with the development of progressive multifocal leukoencephalopathy (PML). METHODS: Using next-generation sequencing (NGS) and bioinformatics tools, the NCCR was characterized in cerebrospinal fluid (CSF; N = 21) and brain tissue (N = 16) samples from PML patients (N = 25), urine specimens from systemic lupus erythematosus patients (N = 2), brain tissue samples from control individuals (N = 2) and waste-water samples (N = 5). Quantitative PCR was run in parallel for diagnostic PML samples. RESULTS: Archetype NCCR (i.e. ABCDEF block structure) and archetype-like NCCR harboring minor mutations were detected in two CSF samples and in one CSF sample and in one tissue sample, respectively. Among samples from PML patients, rearranged NCCRs were found in 8 out of 21 CSF samples and in 14 out of 16 brain tissue samples. Complete or partial deletion of the C and D blocks was characteristic of most rearranged JCPyV strains. From ten CSF samples and one tissue sample NCCR could not be amplified. CONCLUSIONS: Rearranged NCCRs are predominant in brain tissue and common in CSF from PML patients. Extremely sensitive detection and identification of neurotropic viral populations in CSF or brain tissue by NGS may contribute to early and accurate diagnosis, timely intervention and improved patient care.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , Humanos , Vírus JC/genética , Sequenciamento de Nucleotídeos em Larga Escala , DNA Viral/genética , DNA Viral/líquido cefalorraquidiano , Leucoencefalopatia Multifocal Progressiva/diagnóstico , Mutação
3.
J Infect Dis ; 228(7): 829-833, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36988117

RESUMO

Progressive multifocal leukoencephalopathy (PML) is a severe neurological condition caused by reactivation of JC polyomavirus (JCPyV) in immunosuppression. Asymptomatic JCPyV persists in peripheral tissues. Upon reactivation, neurotropic rearrangements may emerge, and the virus gains access to the brain. To assess the mechanisms of PML pathogenesis, brain tissue material from PML patients was collected for small RNA sequencing. Upregulation of 8 microRNAs (miRNAs) in PML brain was validated using quantitative microRNA polymerase chain reaction (PCR). Bioinformatics tools were utilized to identify major associations of the upregulated miRNAs: neuroinflammation and blood-brain barrier disruption. The results indicate involvement of human miRNA regulation in PML pathogenesis.


Assuntos
Vírus JC , Leucoencefalopatia Multifocal Progressiva , MicroRNAs , Humanos , Leucoencefalopatia Multifocal Progressiva/genética , Leucoencefalopatia Multifocal Progressiva/patologia , Vírus JC/genética , MicroRNAs/genética , Encéfalo/patologia , Sequência de Bases
4.
NPJ Parkinsons Dis ; 8(1): 129, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216843

RESUMO

Gut microbiota alterations in Parkinson's disease (PD) have been found in several studies and are suggested to contribute to the pathogenesis of PD. However, previous results could not be adequately adjusted for a potential confounding effect of PD medication and disease duration, as almost all PD participants were already using dopaminergic medication and were included several years after diagnosis. Here, the gut microbiome composition of treatment-naive de novo PD subjects was assessed compared to healthy controls (HC) in two large independent case-control cohorts (n = 136 and 56 PD, n = 85 and 87 HC), using 16S-sequencing of fecal samples. Relevant variables such as technical batches, diet and constipation were assessed for their potential effects. Overall gut microbiome composition differed between PD and HC in both cohorts, suggesting gut microbiome alterations are already present in de novo PD subjects at the time of diagnosis, without the possible confounding effect of dopaminergic medication. Although no differentially abundant taxon could be replicated in both cohorts, multiple short chain fatty acids (SCFA) producing taxa were decreased in PD in both cohorts. In particular, several taxa belonging to the family Lachnospiraceae were decreased in abundance. Fewer taxonomic differences were found compared to previous studies, indicating smaller effect sizes in de novo PD.

5.
Viruses ; 14(9)2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-36146795

RESUMO

Severe acute respiratory syndrome coronavirus-2 is the causative agent of COVID-19. During the pandemic of 2019-2022, at least 500 million have been infected and over 6.3 million people have died from COVID-19. The virus is pleomorphic, and due to its pathogenicity is often handled in very restrictive biosafety containments laboratories. We developed two effective and rapid purification methods followed by UV inactivation that allow easy downstream handling of the virus. We monitored the purification through titering, sequencing, mass spectrometry and electron cryogenic microscopy. Although pelleting through a sucrose cushion, followed by gentle resuspension overnight gave the best particle recovery, infectivity decreased, and the purity was significantly worse than if using the size exclusion resin Capto Core. Capto Core can be used in batch mode, and was seven times faster than the pelleting method, obviating the need for ultracentrifugation in the containment laboratory, but resulting in a dilute virus. UV inactivation was readily optimized to allow handling of the inactivated samples under standard operating conditions. When containment laboratory space is limited, we recommend the use of Capto Core for purification and UV for inactivation as a simple, rapid workflow prior, for instance, to electron cryogenic microscopy or cell activation experiments.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Proteômica , Sacarose , Inativação de Vírus
6.
J Med Virol ; 94(3): 1227-1231, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34698407

RESUMO

While most of the spontaneous mutations in the viral genome have no functional, diagnostic, or clinical consequences, some have. In February 2021, we noticed in Southern Finland coronavirus disease 2019 cases where two commercial polymerase chain reaction (PCR) analyses failed to recognize the used N gene target but recognized the other target gene of severe acute respiratory syndrome coronavirus 2. Complete viral genome sequence analysis of the strains revealed several mutations that were not found at that time in public databases. A short 3 bp deletion and three subsequent single nucleotide polymorphisms in the N gene were found exactly at the site where an early published and widely used N gene-based PCR primer is located, explaining the negative results in the N gene PCR. Later the variant strain was identified as a member of the B.1.1.318 Pango lineage that had first been found from Nigerian samples collected in January 2021. This strain shares with the Beta variant the S gene E484K mutation linked to impaired vaccine protection, but differs from this variant in several other ways, for example by deletions in the N gene region. Mutations in the N gene causing diagnostic resistance and on the other hand E484K mutation in the causing altered infectivity warrants careful inspection on virus variants that might get underdiagnosed.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , Mutação , Reação em Cadeia da Polimerase , SARS-CoV-2/genética
7.
PLoS One ; 16(12): e0261170, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34914762

RESUMO

OBJECTIVE: We have used long-read single molecule, real-time (SMRT) sequencing to fully characterize a ~12Mb genomic region on chromosome Xq24-q27, significantly linked to bipolar disorder (BD) in an extended family from a genetic sub-isolate. This family segregates BD in at least four generations with 24 affected individuals. METHODS: We selected 16 family members for targeted sequencing. The selected individuals either carried the disease haplotype, were non-carriers of the disease haplotype, or served as married-in controls. We designed hybrid capture probes enriching for 5-9Kb fragments spanning the entire 12Mb region that were then sequenced to screen for candidate structural variants (SVs) that could explain the increased risk for BD in this extended family. RESULTS: Altogether, 201 variants were detected in the critically linked region. Although most of these represented common variants, three variants emerged that showed near-perfect segregation among all BD type I affected individuals. Two of the SVs were identified in or near genes belonging to the RNA Binding Motif Protein, X-Linked (RBMX) gene family-a 330bp Alu (subfamily AluYa5) deletion in intron 3 of the RBMX2 gene and an intergenic 27bp tandem repeat deletion between the RBMX and G protein-coupled receptor 101 (GPR101) genes. The third SV was a 50bp tandem repeat insertion in intron 1 of the Coagulation Factor IX (F9) gene. CONCLUSIONS: Among the three genetically linked SVs, additional evidence supported the Alu element deletion in RBMX2 as the leading candidate for contributing directly to the disease development of BD type I in this extended family.


Assuntos
Elementos Alu , Transtorno Bipolar/genética , Genes Ligados ao Cromossomo X , Predisposição Genética para Doença , Feminino , Humanos , Masculino , Linhagem
8.
Microorganisms ; 9(7)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206222

RESUMO

Lichens have been widely used in traditional medicine, especially by indigenous communities worldwide. However, their slow growth and difficulties in the isolation of lichen symbionts and associated microbes have hindered the pharmaceutical utilisation of lichen-produced compounds. Advances in high-throughput sequencing techniques now permit detailed investigations of the complex microbial communities formed by fungi, green algae, cyanobacteria, and other bacteria within the lichen thalli. Here, we used amplicon sequencing, shotgun metagenomics, and in silico metabolomics together with compound extractions to study reindeer lichens collected from Southern Finland. Our aim was to evaluate the potential of Cladonia species as sources of novel natural products. We compared the predicted biosynthetic pathways of lichen compounds from isolated genome-sequenced lichen fungi and our environmental samples. Potential biosynthetic genes could then be further used to produce secondary metabolites in more tractable hosts. Furthermore, we detected multiple compounds by metabolite analyses, which revealed connections between the identified biosynthetic gene clusters and their products. Taken together, our results contribute to metagenomic data studies from complex lichen-symbiotic communities and provide valuable new information for use in further biochemical and pharmacological studies.

9.
BMC Res Notes ; 14(1): 137, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33858503

RESUMO

OBJECTIVES: The study aims to generate the whole genome sequence of L. monocytogenes strain S2542 and to compare it to the genomes of strains RO15 and ScottA. In addition, we aimed to compare gene expression profiles of L. monocytogenes strains S2542, ScottA and RO15 after high-pressure processing (HPP) using ddPCR. RESULTS: The whole genome sequence of L. monocytogenes S2542 indicates that this strain belongs to serotype 4b, in contrast to the previously reported serotype 1/2a. Strain S2542 appears to be more susceptible to the treatment at 400 MPa compared to RO15 and ScottA strains. In contrast to RO15 and ScottA strains, viable cell counts of strain S2542 were below the limit of detection after HPP (400 MPa/8 min) when stored at 8 °C for 24 and 48 h. The transcriptional response of all three strains to HPP was not significantly different.


Assuntos
Listeria monocytogenes , Microbiologia de Alimentos , Técnicas Genéticas , Listeria monocytogenes/genética
10.
BMC Genomics ; 22(1): 117, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579201

RESUMO

BACKGROUND: High-pressure processing (HPP) is a commonly used technique in the food industry to inactivate pathogens, including L. monocytogenes. It has been shown that L. monocytogenes is able to recover from HPP injuries and can start to grow again during long-term cold storage. To date, the gene expression profiling of L. monocytogenes during HPP damage recovery at cooling temperature has not been studied. In order identify key genes that play a role in recovery of the damage caused by HPP treatment, we performed RNA-sequencing (RNA-seq) for two L. monocytogenes strains (barotolerant RO15 and barosensitive ScottA) at nine selected time points (up to 48 h) after treatment with two pressure levels (200 and 400 MPa). RESULTS: The results showed that a general stress response was activated by SigB after HPP treatment. In addition, the phosphotransferase system (PTS; mostly fructose-, mannose-, galactitol-, cellobiose-, and ascorbate-specific PTS systems), protein folding, and cobalamin biosynthesis were the most upregulated genes during HPP damage recovery. We observed that cell-division-related genes (divIC, dicIVA, ftsE, and ftsX) were downregulated. By contrast, peptidoglycan-synthesis genes (murG, murC, and pbp2A) were upregulated. This indicates that cell-wall repair occurs as a part of HPP damage recovery. We also observed that prophage genes, including anti-CRISPR genes, were induced by HPP. Interestingly, a large amount of RNA-seq data (up to 85%) was mapped to Rli47, which is a non-coding RNA that is upregulated after HPP. Thus, we predicted that Rli47 plays a role in HPP damage recovery in L. monocytogenes. Moreover, gene-deletion experiments showed that amongst peptidoglycan biosynthesis genes, pbp2A mutants are more sensitive to HPP. CONCLUSIONS: We identified several genes and mechanisms that may play a role in recovery from HPP damage of L. monocytogenes. Our study contributes to new information on pathogen inactivation by HPP.


Assuntos
Listeria monocytogenes , Microbiologia de Alimentos , Indústria de Processamento de Alimentos , Listeria monocytogenes/genética , Temperatura , Transcriptoma
11.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-32675190

RESUMO

Cutibacterium acnes is a member of the normal human skin microbiome. However, it is also associated with skin disorders and persistent infections of orthopedic implants. Here, we announce complete genome sequences and methylomes of the C. acnes subsp. acnes strains DSM 1897T and DSM 16379 together with their active restriction-modification systems.

12.
BMC Genomics ; 21(1): 455, 2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32615922

RESUMO

BACKGROUND: High pressure processing (HPP; i.e. 100-600 MPa pressure depending on product) is a non-thermal preservation technique adopted by the food industry to decrease significantly foodborne pathogens, including Listeria monocytogenes, from food. However, susceptibility towards pressure differs among diverse strains of L. monocytogenes and it is unclear if this is due to their intrinsic characteristics related to genomic content. Here, we tested the barotolerance of 10 different L. monocytogenes strains, from food and food processing environments and widely used reference strains including clinical isolate, to pressure treatments with 400 and 600 MPa. Genome sequencing and genome comparison of the tested L. monocytogenes strains were performed to investigate the relation between genomic profile and pressure tolerance. RESULTS: None of the tested strains were tolerant to 600 MPa. A reduction of more than 5 log10 was observed for all strains after 1 min 600 MPa pressure treatment. L. monocytogenes strain RO15 showed no significant reduction in viable cell counts after 400 MPa for 1 min and was therefore defined as barotolerant. Genome analysis of so far unsequenced L. monocytogenes strain RO15, 2HF33, MB5, AB199, AB120, C7, and RO4 allowed us to compare the gene content of all strains tested. This revealed that the three most pressure tolerant strains had more than one CRISPR system with self-targeting spacers. Furthermore, several anti-CRISPR genes were detected in these strains. Pan-genome analysis showed that 10 prophage genes were significantly associated with the three most barotolerant strains. CONCLUSIONS: L. monocytogenes strain RO15 was the most pressure tolerant among the selected strains. Genome comparison suggests that there might be a relationship between prophages and pressure tolerance in L. monocytogenes.


Assuntos
Conservação de Alimentos , Genoma Bacteriano , Listeria monocytogenes/genética , Sistemas CRISPR-Cas , Metilação de DNA , Genômica , Viabilidade Microbiana , Pressão , RNA-Seq , Padrões de Referência
13.
J Neuromuscul Dis ; 7(4): 477-481, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32597815

RESUMO

Although DNA-sequencing is the most effective procedure to achieve a molecular diagnosis in genetic diseases, complementary RNA analyses are often required.Reverse-Transcription polymerase chain reaction (RT-PCR) is still a valuable option when the clinical phenotype and/or available DNA-test results address the diagnosis toward a gene of interest or when the splicing effect of a single variant needs to be assessed.We use Single-Molecule Real-Time sequencing to detect and characterize splicing defects and single nucleotide variants in well-known disease genes (DMD, NF1, TTN). After proper optimization, the procedure could be used in the diagnostic setting, simplifying the workflow of cDNA analysis.


Assuntos
DNA Complementar , Testes Genéticos/métodos , Polimorfismo de Nucleotídeo Único , Splicing de RNA , Análise de Sequência de DNA/métodos , Conectina/genética , Distrofina/genética , Humanos , Neurofibromina 1/genética
15.
Microorganisms ; 7(11)2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31671651

RESUMO

The novel Acidipropionibacterium genus encompasses species of industrial importance but also those associated with food spoilage. In particular, Acidipropionibacterium acidipropionici, Acidipropionibacterium thoenii, and Acidipropionibacterium jensenii play an important role in food fermentation, as biopreservatives, or as potential probiotics. Notably, A. jensenii and A. thoenii can cause brown spot defects in Swiss-type cheeses, which have been tied to the rhamnolipid pigment granadaene. In the pathogenic bacterium Streptococcus agalactiae, production of granadaene depends on the presence of a cyl gene cluster, an important virulence factor linked with haemolytic activity. Here, we show that the production of granadaene in pigmented Acidipropionibacterium, including A. jensenii, A. thoenii, and Acidipropionibacterium virtanenii, is tied to haemolytic activity and the presence of a cyl-like gene cluster. Furthermore, we propose a PCR-based test, which allows pinpointing acidipropionibacteria with the cyl-like gene cluster. Finally, we present the first two whole genome sequence analyses of the A. jensenii strains as well as testing phenotypic characteristics important for industrial applications. In conclusion, the present study sheds light on potential risks associated with the presence of pigmented Acidipropionibacterium strains in food fermentation. In addition, the results presented here provide ground for development of a quick and simple diagnostic test instrumental in avoiding potential negative effects of Acidipropionibacterium strains with haemolytic activity on food quality.

16.
PLoS One ; 14(9): e0216885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31498807

RESUMO

Unknown sequences, or gaps, are present in many published genomes across public databases. Gap filling is an important finishing step in de novo genome assembly, especially in large genomes. The gap filling problem is nontrivial and while there are many computational tools partially solving the problem, several have shortcomings as to the reliability and correctness of the output, i.e. the gap filled draft genome. SSPACE-LongRead is a scaffolding tool that utilizes long reads from multiple third-generation sequencing platforms in finding links between contigs and combining them. The long reads potentially contain sequence information to fill the gaps created in the scaffolding, but SSPACE-LongRead currently lacks this functionality. We present an automated pipeline called gapFinisher to process SSPACE-LongRead output to fill gaps after the scaffolding. gapFinisher is based on the controlled use of a previously published gap filling tool FGAP and works on all standard Linux/UNIX command lines. We compare the performance of gapFinisher against two other published gap filling tools PBJelly and GMcloser. We conclude that gapFinisher can fill gaps in draft genomes quickly and reliably. In addition, the serial design of gapFinisher makes it scale well from prokaryote genomes to larger genomes with no increase in the computational footprint.


Assuntos
Algoritmos , Mapeamento de Sequências Contíguas/estatística & dados numéricos , Genoma , Genômica/métodos , Análise de Sequência de DNA/estatística & dados numéricos , Software , Animais , Bactérias/genética , Benchmarking , Bases de Dados Genéticas , Genômica/estatística & dados numéricos , Sequenciamento de Nucleotídeos em Larga Escala , Focas Verdadeiras/genética
17.
BMC Genomics ; 20(1): 430, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138126

RESUMO

BACKGROUND: The white rot fungus Phlebia radiata, a type species of the genus Phlebia, is an efficient decomposer of plant cell wall polysaccharides, modifier of softwood and hardwood lignin, and is able to produce ethanol from various waste lignocellulose substrates. Thus, P. radiata is a promising organism for biotechnological applications aiming at sustainable utilization of plant biomass. Here we report the genome sequence of P. radiata isolate 79 originally isolated from decayed alder wood in South Finland. To better understand the evolution of wood decay mechanisms in this fungus and the Polyporales phlebioid clade, gene content and clustering of genes encoding specific carbohydrate-active enzymes (CAZymes) in seven closely related fungal species was investigated. In addition, other genes encoding proteins reflecting the fungal lifestyle including peptidases, transporters, small secreted proteins and genes involved in secondary metabolism were identified in the genome assembly of P. radiata. RESULTS: The PACBio sequenced nuclear genome of P. radiata was assembled to 93 contigs with 72X sequencing coverage and annotated, revealing a dense genome of 40.4 Mbp with approximately 14 082 predicted protein-coding genes. According to functional annotation, the genome harbors 209 glycoside hydrolase, 27 carbohydrate esterase, 8 polysaccharide lyase, and over 70 auxiliary redox enzyme-encoding genes. Comparisons with the genomes of other phlebioid fungi revealed shared and specific properties among the species with seemingly similar saprobic wood-decay lifestyles. Clustering of especially GH10 and AA9 enzyme-encoding genes according to genomic localization was discovered to be conserved among the phlebioid species. In P. radiata genome, a rich repertoire of genes involved in the production of secondary metabolites was recognized. In addition, 49 genes encoding predicted ABC proteins were identified in P. radiata genome together with 336 genes encoding peptidases, and 430 genes encoding small secreted proteins. CONCLUSIONS: The genome assembly of P. radiata contains wide array of carbohydrate polymer attacking CAZyme and oxidoreductase genes in a composition identifiable for phlebioid white rot lifestyle in wood decomposition, and may thus serve as reference for further studies. Comparative genomics also contributed to enlightening fungal decay mechanisms in conversion and cycling of recalcitrant organic carbon in the forest ecosystems.


Assuntos
Genoma Fúngico , Lignina/metabolismo , Polyporales/genética , Transportadores de Cassetes de Ligação de ATP/genética , Metabolismo dos Carboidratos , Celulose/metabolismo , Genômica , Pectinas/metabolismo , Peptídeo Hidrolases/genética , Polyporales/enzimologia , Polissacarídeos/metabolismo , Metabolismo Secundário/genética
18.
Nat Commun ; 9(1): 3735, 2018 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282993

RESUMO

Yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a devastating fungal disease threatening much of global wheat production. Race-specific resistance (R)-genes are used to control rust diseases, but the rapid emergence of virulent Pst races has prompted the search for a more durable resistance. Here, we report the cloning of Yr15, a broad-spectrum R-gene derived from wild emmer wheat, which encodes a putative kinase-pseudokinase protein, designated as wheat tandem kinase 1, comprising a unique R-gene structure in wheat. The existence of a similar gene architecture in 92 putative proteins across the plant kingdom, including the barley RPG1 and a candidate for Ug8, suggests that they are members of a distinct family of plant proteins, termed here tandem kinase-pseudokinases (TKPs). The presence of kinase-pseudokinase structure in both plant TKPs and the animal Janus kinases sheds light on the molecular evolution of immune responses across these two kingdoms.


Assuntos
Basidiomycota/patogenicidade , Resistência à Doença/genética , Genes de Plantas/fisiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Triticum/fisiologia , Animais , Mapeamento Cromossômico , Evolução Molecular , Hordeum/genética , Janus Quinases/genética , Mutagênese , Doenças das Plantas/microbiologia , Plantas Geneticamente Modificadas , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Triticum/microbiologia
19.
Int J Syst Evol Microbiol ; 68(10): 3175-3183, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30156530

RESUMO

A Gram-stain-positive, catalase-positive and pleomorphic rod organism was isolated from malted barley in Finland, classified initially by partial 16S rRNA gene sequencing and originally deposited in the VTT Culture Collection as a strain of Propionibacterium acidipropionici (currently Acidipropionibacterium acidipropionici). The subsequent comparison of the whole 16S rRNA gene with other representatives of the genus Acidipropionibacterium revealed that the strain belongs to a novel species, most closely related to Acidipropionibacterium microaerophilum and Acidipropionibacterium acidipropionici, with similarity values of 98.46 and 98.31 %, respectively. The whole genome sequencing using PacBio RS II platform allowed further comparison of the genome with all of the other DNA sequences available for the type strains of the Acidipropionibacterium species. Those comparisons revealed the highest similarity of strain JS278T to A. acidipropionici, which was confirmed by the average nucleotide identity analysis. The genome of strain JS278T is intermediate in size compared to the A. acidipropionici and Acidipropionibacterium jensenii at 3 432 872 bp, the G+C content is 68.4 mol%. The strain fermented a wide range of carbon sources, and produced propionic acid as the major fermentation product. Besides its poor ability to grow at 37 °C and positive catalase reaction, the observed phenotype was almost indistinguishable from those of A. acidipropionici and A. jensenii. Based on our findings, we conclude that the organism represents a novel member of the genus Acidipropionibacterium, for which we propose the name Acidipropionibacteriumvirtanenii sp. nov. The type strain is JS278T (=VTT E-113202T=DSM 106790T).


Assuntos
Hordeum/microbiologia , Filogenia , Propionibacterium/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Fermentação , Finlândia , Propionibacterium/genética , Propionibacterium/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
20.
Int J Food Microbiol ; 281: 10-22, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-29803134

RESUMO

In Swiss-type cheeses, characteristic nut-like and sweet flavor develops during the cheese ripening due to the metabolic activities of cheese microbiota. Temperature changes during warm and cold room ripening, and duration of ripening can significantly change the gene expression of the cheese microbiota, which can affect the flavor formation. In this study, a metagenomic and metatranscriptomic analysis of Swiss-type Maasdam cheese was performed on samples obtained during ripening in the warm and cold rooms. We reconstructed four different bacterial genomes (Lactococcus lactis, Lactobacillus rhamnosus, Lactobacillus helveticus, and Propionibacterium freudenreichii subsp. shermanii strain JS) from the Maasdam cheese to near completeness. Based on the DNA and RNA mean coverage, Lc. lactis strongly dominated (~80-90%) within the cheese microbial community. Genome annotation showed the potential for the presence of several flavor forming pathways in these species, such as production of methanethiol, free fatty acids, acetoin, diacetyl, acetate, ethanol, and propionate. Using the metatranscriptomic data, we showed that, with the exception of Lc. lactis, the central metabolism of the microbiota was downregulated during cold room ripening suggesting that fewer flavor compounds such as acetoin and propionate were produced. In contrast, Lc. lactis genes related to the central metabolism, including the vitamin biosynthesis and homolactic fermentation, were upregulated during cold room ripening.


Assuntos
Queijo/microbiologia , Metagenômica , Microbiota/fisiologia , Transcriptoma , Queijo/análise , Temperatura Baixa , Fermentação , Manipulação de Alimentos , Regulação Bacteriana da Expressão Gênica , Microbiota/genética , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...