Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 623, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965596

RESUMO

BACKGROUND: Obesity is a worldwide epidemic characterized by adipose tissue (AT) inflammation. AT is also a source of extracellular vesicles (EVs) that have recently been implicated in disorders related to metabolic syndrome. However, our understanding of mechanistic aspect of obesity's impact on EV secretion from human AT remains limited. METHODS: We investigated EVs from human Simpson Golabi Behmel Syndrome (SGBS) adipocytes, and from AT as well as plasma of subjects undergoing bariatric surgery. SGBS cells were treated with TNFα, palmitic acid, and eicosapentaenoic acid. Various analyses, including nanoparticle tracking analysis, electron microscopy, high-resolution confocal microscopy, and gas chromatography-mass spectrometry, were utilized to study EVs. Plasma EVs were analyzed with imaging flow cytometry. RESULTS: EVs from mature SGBS cells differed significantly in size and quantity compared to preadipocytes, disagreeing with previous findings in mouse adipocytes and indicating that adipogenesis promotes EV secretion in human adipocytes. Inflammatory stimuli also induced EV secretion, and altered EV fatty acid (FA) profiles more than those of cells, suggesting the role of EVs as rapid responders to metabolic shifts. Visceral AT (VAT) exhibited higher EV secretion compared to subcutaneous AT (SAT), with VAT EV counts positively correlating with plasma triacylglycerol (TAG) levels. Notably, the plasma EVs of subjects with obesity contained a higher number of adiponectin-positive EVs than those of lean subjects, further demonstrating higher AT EV secretion in obesity. Moreover, plasma EV counts of people with obesity positively correlated with body mass index and TNF expression in SAT, connecting increased EV secretion with AT expansion and inflammation. Finally, EVs from SGBS adipocytes and AT contained TAGs, and EV secretion increased despite signs of less active lipolytic pathways, indicating that AT EVs could be involved in the mobilization of excess lipids into circulation. CONCLUSIONS: We are the first to provide detailed FA profiles of human AT EVs. We report that AT EV secretion increases in human obesity, implicating their role in TAG transport and association with adverse metabolic parameters, thereby emphasizing their role in metabolic disorders. These findings promote our understanding of the roles that EVs play in human AT biology and metabolic disorders.


Assuntos
Adipócitos , Tecido Adiposo , Vesículas Extracelulares , Inflamação , Obesidade , Humanos , Vesículas Extracelulares/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Adipócitos/metabolismo , Inflamação/patologia , Inflamação/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Metabolismo dos Lipídeos , Feminino , Masculino , Adulto , Ácidos Graxos/metabolismo
2.
J Extracell Biol ; 3(1): e130, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38938679

RESUMO

Blood-derived extracellular vesicles (EVs) hold great therapeutic potential. As blood contains mixed EV populations, it is challenging to study EVs originating from different cells separately. Blood cell concentrates manufactured in blood banks offer an excellent non-invasive source of blood cell-specific EV populations. To study blood cell-specific EVs, we isolated EVs from platelet (TREVs) and red blood cell (EryEVs) concentrates and characterized them using nanoparticle tracking analysis, imaging flow cytometry, electron microscopy and western blot analysis and co-cultured them with peripheral blood mononuclear cells (PBMCs). Our aim was to use imaging flow cytometry to investigate EV interaction with PBMCs as well as study their effects on T-lymphocyte populations to better understand their possible biological functions. As a conclusion, TREVs interacted with PBMCs more than EryEVs. Distinctively, TREVs were uptaken into CD11c+ monocytes rapidly and into CD19+ B-lymphocytes in 24 h. EryEVs were not uptaken into CD11c+ monocytes before the 24-h time point, and they were only seen on the surface of lymphocytes. Neither TREVs nor EryEV were uptaken into CD3+ T-lymphocytes and no effect on T-cell populations was detected. We have previously seen similar differences in targeting PC-3 cancer cells. Further studies are needed to address the functional properties of blood cell concentrate-derived EVs. This study demonstrates that imaging flow cytometry can be used to study the distinctive differences in the interaction and uptake of EVs. Considering our current and previous results, EVs present a new valuable component for the future development of blood-derived therapeutics.

3.
J Control Release ; 368: 397-412, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38423475

RESUMO

Platelet-rich plasma (PRP) is a source of growth factors, which are implicated in active tissue regeneration. However, after transplantation the efficacy of these bioactive compounds is often diminished due to rapid degradation and untargeted localization. For this reason, we evaluated the potential of nanofibrillated cellulose (NFC) hydrogel as a PRP carrier. NFC hydrogel is an animal-free biomaterial that, when doped with cellulase, can assist the release of PRP in a wound site. In this study, we examined the effects of 0.5% (m/v) NFC hydrogel formulations, including PRP and cellulase, on the migration and proliferation of skin cells via an in vitro scratch wound model. The suitability of the 0.8% NFC hydrogel formulations for accelerated wound healing and PRP carrying was studied in vitro in diffusion studies and in vivo in a full-thickness excisional wound model in SKH1 mice. None of the NFC hydrogel formulations with or without PRP and cellulase disturbed the normal cell behavior in vitro, and cellulase was successfully used to degrade NFC. NFC hydrogel slowed fibroblast migration rate in vitro. In vivo, NFC hydrogel treatment showed significantly enhanced re-epithelialization compared to control and supported collagen deposition. In addition, angiogenesis was significantly induced via PRP release after degrading NFC hydrogel with cellulase without abnormal host reaction. This study demonstrates the potential of NFC hydrogel with cellulase as a carrier for PRP with controlled release in future skin tissue engineering applications.


Assuntos
Celulases , Plasma Rico em Plaquetas , Camundongos , Animais , Hidrogéis/farmacologia , Celulose , Cicatrização , Celulases/farmacologia
4.
J Chromatogr A ; 1707: 464293, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37579702

RESUMO

Purification of extracellular vesicles for research and therapeutic applications requires updated methodology to address the limitations of traditional ultracentrifugation and other size-based separation techniques. Their downfalls include induced extracellular vesicle aggregation, low yields, poor scalability and one-dimensionality of the separation process, as the size or sedimentation speed of extracellular vesicles is often the only selection criterion. Ion exchange chromatography is a promising alternative or supplementary method candidate, as it offers a different approach for extracellular vesicle separation, which is surface charge. For now, mostly anion exchange chromatography has been evaluated for extracellular vesicle purification, as it successfully relies on the strongly negative surface charge of extracellular vesicles. However, as extracellular vesicles are very complex in their structure, also cation exchange chromatography could be applicable, due to individual cationic domains on the extracellular vesicle surface. Here, we compare anion exchange chromatography to different types of cation exchange chromatography for the purification of platelet extracellular vesicle samples also containing plasma-derived impurities. We found that the choice of resin structure used for cation exchange chromatography is critical for binding platelet extracellular vesicles, as a conventional-type cation exchanger was found to only capture and elute less than 20% of extracellular vesicles. With the tentacle-type resin, it was possible to obtain comparable platelet extracellular vesicle yields (over 90%) with cation exchange chromatography compared to anion exchange chromatography, as well as superior purity, especially when it was combined to conventional cation exchange resin.


Assuntos
Vesículas Extracelulares , Ligantes , Cromatografia por Troca Iônica/métodos , Ultracentrifugação , Vesículas Extracelulares/química , Resinas de Troca de Cátion/química
5.
Eur J Cell Biol ; 102(2): 151311, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963245

RESUMO

Platelet extracellular vesicles (PEVs) generated upon platelet activation may play a role in inflammatory pathologies such as atherosclerosis. Oxidized low-density lipoprotein (oxLDL), a well-known contributor to atherogenesis, activates platelets and presensitizes them for activation by other agonists. We studied the effect of oxLDL on the secretion, composition, and inflammatory functions of PEVs using contemporary EV analytics. Platelets were activated by co-stimulation with thrombin (T) and collagen (C) ± oxLDL and characterized by high-resolution flow cytometry, nanoparticle tracking analysis, proximity extension assay, western blot, and electron microscopy. The effect of PEVs on macrophage differentiation and functionality was examined by analyzing macrophage surface markers, cytokine secretion, and transcriptome. OxLDL upregulated TC-induced formation of CD61+, P-selectin+ and phosphatidylserine+ PEVs. Blocking the scavenger receptor CD36 significantly suppressed the oxLDL+TC-induced PEV formation, and HDL caused a slight but detectable suppression. The inflammatory protein cargo differed between the PEVs from stimulated and unstimulated platelets. Both oxLDL+TC- and TC-induced PEVs enhanced macrophage HLA-DR and CD86 expression and decreased CD11c expression as well as secretion of several cytokines. Pathways related to cell cycle and regulation of gene expression, and immune system signaling were overrepresented in the differentially expressed genes between TC PEV -treated vs. control macrophages and oxLDL+TC PEV -treated vs. control macrophages, respectively. In conclusion, we speculate that oxLDL and activated platelets contribute to proatherogenic processes by increasing the number of PEVs that provide an adhesive and procoagulant surface, contain inflammatory mediators, and subtly finetune the macrophage gene expression.


Assuntos
Plaquetas , Vesículas Extracelulares , Plaquetas/metabolismo , Macrófagos/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Vesículas Extracelulares/metabolismo , Expressão Gênica
6.
J Extracell Vesicles ; 10(12): e12158, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34651466

RESUMO

Urinary extracellular vesicles (uEV) are a topical source of non-invasive biomarkers for health and diseases of the urogenital system. However, several challenges have become evident in the standardization of uEV pipelines from collection of urine to biomarker analysis. Here, we studied the effect of pre-analytical variables and developed means of quality control for uEV isolates to be used in transcriptomic biomarker research. We included urine samples from healthy controls and individuals with type 1 or type 2 diabetes and normo-, micro- or macroalbuminuria and isolated uEV by ultracentrifugation. We studied the effect of storage temperature (-20°C vs. -80°C), time (up to 4 years) and storage format (urine or isolated uEV) on quality of uEV by nanoparticle tracking analysis, electron microscopy, Western blotting and qPCR. Urinary EV RNA was compared in terms of quantity, quality, and by mRNA or miRNA sequencing. To study the stability of miRNA levels in samples isolated by different methods, we created and tested a list of miRNAs commonly enriched in uEV isolates. uEV and their transcriptome were preserved in urine or as isolated uEV even after long-term storage at -80°C. However, storage at -20°C degraded particularly the GC-rich part of the transcriptome and EV protein markers. Transcriptome was preserved in RNA samples extracted with and without DNAse, but read distributions still showed some differences in e.g. intergenic and intronic reads. MiRNAs commonly enriched in uEV isolates were stable and concordant between different EV isolation methods. Analysis of never frozen uEV helped to identify surface characteristics of particles by EM. In addition to uEV, qPCR assays demonstrated that uEV isolates commonly contained polyoma viruses. Based on our results, we present recommendations how to store and handle uEV isolates for transcriptomics studies that may help to expedite standardization of the EV biomarker field.


Assuntos
Biomarcadores/urina , Diabetes Mellitus/urina , Vesículas Extracelulares/metabolismo , Transcriptoma/genética , Adulto , Estudos de Casos e Controles , Humanos , Controle de Qualidade
7.
Biosens Bioelectron ; 168: 112510, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32877783

RESUMO

Extracellular vesicles (EVs) have the ability to function as molecular vehicles and could therefore be harnessed to deliver drugs to target cells in diseases such as cancer. The composition of EVs determines their function as well as their interactions with cells, which consequently affects the cell uptake efficacy of EVs. In this study, we present two novel label-free approaches for studying EVs; characterization of EV composition by time-gated surface-enhanced Raman spectroscopy (TG-SERS) and monitoring the kinetics and amount of cellular uptake of EVs by surface plasmon resonance (SPR) in real-time. Using these methods, we characterized the most abundant EVs of human blood, red blood cell (RBC)- and platelet (PLT)-derived EVs and studied their interactions with prostate cancer cells. Complementary studies were performed with nanoparticle tracking analysis for concentration and size determinations of EVs, zeta potential measurements for surface charge analysis, and fluorophore-based confocal imaging and flow cytometry to confirm EV uptake. Our results revealed distinct biochemical features between the studied EVs and demonstrated that PLT-derived EVs were more efficiently internalized by PC-3 cells than RBC-derived EVs. The two novel label-free techniques introduced in this study were found to efficiently complement conventional techniques and paves the way for further use of TG-SERS and SPR in EV studies.


Assuntos
Técnicas Biossensoriais , Vesículas Extracelulares , Nanopartículas , Humanos , Masculino , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
8.
Cells ; 9(9)2020 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-32972000

RESUMO

Human mesenchymal stromal/stem cells (hMSCs) show great promise in cell therapy due to their immunomodulatory properties. The overall immunomodulatory response of hMSCs resembles the resolution of inflammation, in which lipid mediators and regulatory macrophages (Mregs) play key roles. We investigated the effect of hMSC cell-cell contact and secretome on macrophages polarized and activated toward Mreg phenotype. Moreover, we studied the effect of supplemented polyunsaturated fatty acids (PUFAs): docosahexaenoic acid (DHA) and arachidonic acid, the precursors of lipid mediators, on hMSC immunomodulation. Our results show that unlike hMSC cell-cell contact, the hMSC secretome markedly increased the CD206 expression in both Mreg-polarized and Mreg-activated macrophages. Moreover, the secretome enhanced the expression of programmed death-ligand 1 on Mreg-polarized macrophages and Mer receptor tyrosine kinase on Mreg-activated macrophages. Remarkably, these changes were translated into improved Candida albicans phagocytosis activity of macrophages. Taken together, these results demonstrate that the hMSC secretome promotes the immunoregulatory and proresolving phenotype of Mregs. Intriguingly, DHA supplementation to hMSCs resulted in a more potentiated immunomodulation with increased CD163 expression and decreased gene expression of matrix metalloproteinase 2 in Mreg-polarized macrophages. These findings highlight the potential of PUFA supplementations as an easy and safe method to improve the hMSC therapeutic potential.


Assuntos
Ácido Araquidônico/farmacologia , Comunicação Celular/imunologia , Ácidos Docosa-Hexaenoicos/farmacologia , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Fagocitose/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação Mielomonocítica/genética , Antígenos de Diferenciação Mielomonocítica/imunologia , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Candida albicans/crescimento & desenvolvimento , Candida albicans/imunologia , Comunicação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Imunomodulação/efeitos dos fármacos , Interleucina-10/genética , Interleucina-10/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Ativação de Macrófagos/efeitos dos fármacos , Fator Estimulador de Colônias de Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/imunologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Células-Tronco Mesenquimais/citologia , Fenótipo , Cultura Primária de Células , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , c-Mer Tirosina Quinase/genética , c-Mer Tirosina Quinase/imunologia
9.
Transfus Med Hemother ; 46(4): 267-275, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31700509

RESUMO

Novel analytical measures are needed to accurately monitor the properties of platelet concentrates (PCs). Since activated platelets produce platelet-derived extracellular vesicles (EVs), analyzing EVs of PCs may provide additional information about the condition of platelets. The prospect of using EVs as an auxiliary measure of platelet activation state was investigated by examining the effect of platelet additive solutions (PASs) on EV formation and platelet activation during PC storage. The time-dependent activation of platelets in PCs with PAS-B or with the further developed PAS-E was compared by measuring the exposure of CD62P by flow cytometry and the content of soluble glycoprotein V (sGPV) of PCs by an immunoassay. Changes in the concentration and size distribution of EVs were determined using nanoparticle tracking analysis. A time-dependent increase in platelet activation in PCs was demonstrated by increased CD62P ex-posure, sGPV content, and EV concentration. Using these strongly correlating parameters, PAS-B platelets were shown to be more activated compared to PAS-E platelets. Since the EV concentration correlated well with the established platelet activation markers CD62P and sGPV, it could potentially be used as a complementary parameter for platelet activation for PCs. More detailed characterization of the resulting EVs could help to understand how the PC components contribute the functional effects of transfused PCs.

10.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(10): 1350-1362, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31207356

RESUMO

Human mesenchymal stromal/stem cells (hMSCs) are used in experimental cell therapy to treat various immunological disorders, and the extracellular vesicles (hMSC-EVs) they produce have emerged as an option for cell-free therapeutics. The immunomodulatory function of hMSCs resembles the resolution of inflammation, in which proresolving lipid mediators (LMs) play key roles. Multiple mechanisms underlying the hMSC immunosuppressive effect has been elucidated; however, the impact of LMs and EVs in the resolution is poorly understood. In this study, we supplemented hMSCs with polyunsaturated fatty acids (PUFAs); arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, which serve as precursors for multiple LMs. We then determined the consequent compositional modifications in the fatty acid, phospholipid, and LM profiles. Mass spectrometric analyses revealed that the supplemented PUFAs were incorporated into the main membrane phospholipid classes with different dynamics, with phosphatidylcholine serving as the first acceptor. Most importantly, the PUFA modifications were transferred into hMSC-EVs, which are known to mediate hMSC immunomodulation. Furthermore, the membrane-incorporated PUFAs influenced the LM profile by increasing the production of downstream prostaglandin E2 and proresolving LMs, including Resolvin E2 and Resolvin D6. The production of LMs was further enhanced by a highly proinflammatory stimulus, which resulted in an increase in a number of mediators, most notably prostaglandins, while other stimulatory conditions had less a pronounced impact after a 48-h incubation. The current findings suggest that PUFA manipulations of hMSCs exert significant immunomodulatory effects via EVs and proresolving LMs, the composition of which can be modified to potentiate the therapeutic impact of hMSCs.


Assuntos
Vesículas Extracelulares/metabolismo , Ácidos Graxos Insaturados/metabolismo , Mediadores da Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células Cultivadas , Dinoprostona/metabolismo , Ácidos Graxos/metabolismo , Humanos , Fosfolipídeos/metabolismo
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(8): 1168-1182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30980920

RESUMO

Platelets are collected for transfusion to patients with different haematological disorders, and for logistical reasons, platelets are stored as concentrates. Despite carefully controlled conditions, platelets become activated during storage, and platelet concentrates (PlaCs) may cause adverse inflammatory reactions in recipients. The time-dependent changes in the lipidome of clinical PlaCs, platelets isolated from PlaCs, and extracellular vesicles (EVs) thereof were examined by mass spectrometry. The relative amount of arachidonic acid containing glycerophospholipids, especially those in the phosphatidylethanolamine and phosphatidylserine classes during storage, but the relative amount of other polyunsaturated fatty acid containing glycerophospholipids remained stable in all sample types. These changes were not directly translated to lipid mediator (LM) profile since the levels of arachidonic acid-derived proinflammatory LMs were not specifically elevated. Instead, several monohydroxy pathway markers and functionally relevant LMs, both proinflammatory and proresolving, were detected in the PlaCs and the EVs, and some representatives of both kind clearly accumulated during storage. By Western blot, the key enzymes of these pathways were shown to be present in platelets, and in many cases, EVs. Since the EVs were enriched in the fatty acid precursors of LMs in their (phospholipid) membranes, harboured LM-producing enzymes, contained the related monohydroxy pathway markers, and secreted the final LM products, PlaC-derived EVs could participate in the regulation of inflammation and healing, and thereby aid the platelets in exerting their essential physiological functions.


Assuntos
Plaquetas/citologia , Preservação de Sangue , Vesículas Extracelulares/química , Glicerofosfolipídeos/análise , Membrana Celular/química , Vesículas Extracelulares/fisiologia , Humanos , Mediadores da Inflamação/análise , Espectrometria de Massas/métodos , Transfusão de Plaquetas/efeitos adversos , Transfusão de Plaquetas/normas
12.
Front Immunol ; 9: 771, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29706969

RESUMO

Resolution-phase macrophage population orchestrates active dampening of the inflammation by secreting anti-inflammatory and proresolving products including interleukin (IL)-10 and lipid mediators (LMs). We investigated the effects of both human bone marrow-derived mesenchymal stromal cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) on mature human regulatory macrophages (Mregs). The cytokines and LMs were determined from cell culture media of Mregs cultivated with MSCs and MSC-EVs. In addition, the alterations in the expression of cell surface markers and the phagocytic ability of Mregs were investigated. Our novel findings indicate that both MSC coculture and MSC-EVs downregulated the production of IL-23 and IL-22 enhancing the anti-inflammatory phenotype of Mregs and amplifying proresolving properties. The levels of prostaglandin E2 (PGE2) were substantially upregulated in MSC coculture media, which may endorse proresolving LM class switching. In addition, our results manifest, for the first time, that MSC-EVs mediate the Mreg phenotype change via PGE2. These data suggest that both human MSC and MSC-EVs may potentiate tolerance-promoting proresolving phenotype of human Mregs.


Assuntos
Vesículas Extracelulares/imunologia , Interleucina-23/biossíntese , Interleucinas/biossíntese , Macrófagos/imunologia , Células-Tronco Mesenquimais/imunologia , Regulação para Baixo , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Inflamação/metabolismo , Macrófagos/metabolismo , Fenótipo , Interleucina 22
13.
Artigo em Inglês | MEDLINE | ID: mdl-28965917

RESUMO

Red blood cells (RBCs) are stored up to 35-42days at 2-6°C in blood banks. During storage, the RBC membrane is challenged by energy depletion, decreasing pH, altered cation homeostasis, and oxidative stress, leading to several biochemical and morphological changes in RBCs and to shedding of extracellular vesicles (EVs) into the storage medium. These changes are collectively known as RBC storage lesions. EVs accumulate in stored RBC concentrates and are, thus, transfused into patients. The potency of EVs as bioactive effectors is largely acknowledged, and EVs in RBC concentrates are suspected to mediate some adverse effects of transfusion. Several studies have shown accumulation of lipid raft-associated proteins in RBC EVs during storage, whereas a comprehensive phospholipidomic study on RBCs and corresponding EVs during the clinical storage period is lacking. Our mass spectrometric and chromatographic study shows that RBCs maintain their major phospholipid (PL) content well during storage despite abundant vesiculation. The phospholipidomes were largely similar between RBCs and EVs. No accumulation of raft lipids in EVs was seen, suggesting that the primary mechanism of RBC vesiculation during storage might not be raft -based. Nonetheless, a slight tendency of EV PLs for shorter acyl chains was observed.


Assuntos
Preservação de Sangue , Membrana Eritrocítica/química , Eritrócitos/química , Vesículas Extracelulares/química , Fosfolipídeos/análise , Preservação de Sangue/métodos , Preservação de Sangue/normas , Membrana Eritrocítica/metabolismo , Eritrócitos/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Fosfolipídeos/metabolismo , Embalagem de Produtos/normas , Controle de Qualidade
14.
Theranostics ; 7(16): 3824-3841, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29109780

RESUMO

Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. METHODS: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. RESULTS: Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. CONCLUSIONS: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials.


Assuntos
Cromatografia Líquida/métodos , Vesículas Extracelulares/química , Neoplasias da Próstata/metabolismo , Espectrometria de Massas em Tandem/métodos , Adulto , Ácido Glucurônico/metabolismo , Humanos , Masculino , Metabolômica , Microscopia Eletrônica , Ribosemonofosfatos/metabolismo
15.
Stem Cell Reports ; 9(3): 999-1015, 2017 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-28844656

RESUMO

Human bone marrow stromal cells, or mesenchymal stem cells (BM-MSCs), need expansion prior to use as cell-based therapies in immunological and tissue repair applications. Aging and expansion of BM-MSCs induce epigenetic changes that can impact therapeutic outcomes. By applying sequencing-based methods, we reveal that the breadth of DNA methylation dynamics associated with aging and expansion is greater than previously reported. Methylation changes are enriched at known distal transcription factor binding sites such as enhancer elements, instead of CpG-rich regions, and are associated with changes in gene expression. From this, we constructed hypo- and hypermethylation-specific regulatory networks, including a sub-network of BM-MSC master regulators and their predicted target genes, and identified putatively disrupted signaling pathways. Our genome-wide analyses provide a broader overview of age- and expansion-induced DNA methylation changes and a better understanding of the extent to which these changes alter gene expression and functionality of human BM-MSCs.


Assuntos
Células da Medula Óssea/metabolismo , Metilação de DNA/genética , Células-Tronco Mesenquimais/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Sítios de Ligação , Células Cultivadas , Ilhas de CpG/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Genoma Humano , Humanos , Pessoa de Meia-Idade , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo , Adulto Jovem
16.
Br J Cancer ; 116(5): 640-648, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28095396

RESUMO

BACKGROUND: Oral tongue squamous cell carcinoma (OTSCC) metastasises early, especially to regional lymph nodes. There is an ongoing debate on which early stage (T1-T2N0) patients should be treated with elective neck dissection. We need prognosticators for early stage tongue cancer. METHODS: Mice immunisation with human mesenchymal stromal cells resulted in production of antibodies against tenascin-C (TNC) and fibronectin (FN), which were used to stain 178 (98 early stage), oral tongue squamous cell carcinoma samples. Tenascin-C and FN expression in the stroma (negative, moderate or abundant) and tumour cells (negative or positive) were assessed. Similar staining was obtained using corresponding commercial antibodies. RESULTS: Expression of TNC and FN in the stroma, but not in the tumour cells, proved to be excellent prognosticators both in all stages and in early stage cases. Among early stages, when stromal TNC was negative, the 5-year survival rate was 88%. Correspondingly, when FN was negative, no cancer deaths were observed. Five-year survival rates for abundant expression of TNC and FN were 43% and 25%, respectively. CONCLUSIONS: Stromal TNC and, especially, FN expressions differentiate patients into low- and high-risk groups. Surgery alone of early stage primary tumours might be adequate when stromal FN is negative. Aggressive treatments should be considered when both TNC and FN are abundant.


Assuntos
Carcinoma de Células Escamosas/patologia , Fibronectinas/metabolismo , Células Estromais/metabolismo , Tenascina/metabolismo , Neoplasias da Língua/patologia , Carcinoma de Células Escamosas/metabolismo , Gerenciamento Clínico , Feminino , Humanos , Masculino , Estadiamento de Neoplasias , Prognóstico , Análise de Sobrevida , Neoplasias da Língua/metabolismo
17.
J Lipid Res ; 58(1): 92-110, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856675

RESUMO

High arachidonic acid (20:4n-6) and low n-3 PUFA levels impair the capacity of cultured human bone marrow mesenchymal stromal cells (hBMSCs) to modulate immune functions. The capacity of the hBMSCs to modify PUFA structures was found to be limited. Therefore, different PUFA supplements given to the cells resulted in very different glycerophospholipid (GPL) species profiles and substrate availability for phospholipases, which have preferences for polar head group and acyl chains when liberating PUFA precursors for production of lipid mediators. When supplemented with 20:4n-6, the cells increased prostaglandin E2 secretion. However, they elongated 20:4n-6 to the less active precursor, 22:4n-6, and also incorporated it into triacylglycerols, which may have limited the proinflammatory signaling. The n-3 PUFA precursor, 18:3n-3, had little potency to reduce the GPL 20:4n-6 content, while the eicosapentaenoic (20:5n-3) and docosahexaenoic (22:6n-3) acid supplements efficiently displaced the 20:4n-6 acyls, and created diverse GPL species substrate pools allowing attenuation of inflammatory signaling. The results emphasize the importance of choosing appropriate PUFA supplements for in vitro hBMSC expansion and suggests that for optimal function they require an exogenous fatty acid source providing 20:5n-3 and 22:6n-3 sufficiently, but 20:4n-6 moderately, which calls for specifically designed optimal PUFA supplements for the cultures.


Assuntos
Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Insaturados/metabolismo , Inflamação/metabolismo , Células-Tronco Mesenquimais/metabolismo , Fosfolipídeos/metabolismo , Ácido Araquidônico/metabolismo , Células da Medula Óssea/metabolismo , Linhagem Celular , Suplementos Nutricionais , Dinoprostona/genética , Dinoprostona/metabolismo , Ácido Eicosapentaenoico/metabolismo , Ácidos Graxos Insaturados/genética , Glicerofosfolipídeos/metabolismo , Humanos , Imunomodulação/genética , Inflamação/patologia , Espectrometria de Massas , Fosfolipídeos/genética , Triglicerídeos/metabolismo
18.
J Tissue Eng Regen Med ; 11(10): 2725-2736, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27214005

RESUMO

Effects of oxygen tension on the generation, expansion, proliferation and differentiation of stromal cell types is widely described in the literature. However, data on the internal heterogeneity of applied cell populations at different O2 levels and possible impacts on differentiation potentials are controversial. Here, the expression of 39 human HOX genes was determined in neonatal cord blood stromal cells and linked to differentiation-associated signatures. In cord blood, unrestricted somatic stromal cells (USSCs), lacking HOX gene expression, and cord blood-derived multipotent stromal cells (CB-MSCs), expressing about 20 HOX genes, are distinguished by their specific HOX code. Interestingly, 74% of the clones generated at 21% O2 were HOX-negative USSCs, whereas 73% of upcoming clones at 3% O2 were HOX-positive CB-MSCs. In order to better categorize distinct cell lines generated at 3% O2 , the expression of all 39 HOX genes within HOX clusters A, B, C and D were tested and new subtypes defined: cells negative in all four HOX clusters (USSCs); cells positive in all four clusters (CB-MSCsABCD ); and subpopulations missing a single cluster (CB-MSCsACD and CB-MSCsBCD ). Comprehensive qPCR analyses of established chondro-osteomarkers revealed subtype-specific signatures verifiably associated with in vitro and in vivo differentiation capacity. The data presented here underline the necessity of better characterizing distinct cell populations at a clonal level, taking advantage of the inherent specific HOX code as a distinguishing feature between individual subtypes. Moreover, the correlation of subtype-specific molecular signatures with in vitro and in vivo bone formation is discussed. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Sangue Fetal/citologia , Genes Homeobox , Células-Tronco Mesenquimais/metabolismo , Osteogênese/genética , Oxigênio/farmacologia , Adulto , Biomarcadores/metabolismo , Diferenciação Celular , Linhagem Celular , Condrogênese/efeitos dos fármacos , Condrogênese/genética , Clonagem Molecular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Recém-Nascido , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos
19.
Aging (Albany NY) ; 8(11): 2799-2813, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27852979

RESUMO

Mesenchymal stromal cells (MSC) are currently used in many cell based therapies. Prior to use in therapy, extensive expansion is required. We used microarray profiling to investigate expansion induced miRNA and mRNA expression changes of bone marrow MSCs (BM-MSCs) derived from old and young donors. The expression levels of 36 miRNAs were altered in cells derived from the old and respectively 39 miRNAs were altered in cells derived from young donors. Of these, only 12 were differentially expressed in both young and old donor BM-MSCs, and their predicted target mRNAs, were mainly linked to cell proliferation and senescence. Further qPCR verification showed that the expression of miR-1915-3p, miR-1207, miR-3665, and miR-762 correlated with the expansion time at passage 8. Previously described BM-MSC-specific miRNA fingerprints were also detected but these remained unchanged during expansion. Interestingly, members of well-studied miR-17/92 cluster, involved in cell cycle regulation, aging and also development of immune system, were down-regulated specifically in cells from old donors. The role of this cluster in MSC functionality is worth future studies since it links expansion, aging and immune system together.


Assuntos
Células da Medula Óssea/citologia , Proliferação de Células/genética , Senescência Celular , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Adulto , Idoso , Envelhecimento , Regulação para Baixo , Perfilação da Expressão Gênica/métodos , Humanos , Células-Tronco Mesenquimais/citologia , RNA Mensageiro/metabolismo , Análise Serial de Tecidos
20.
Small ; 12(45): 6289-6300, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27690329

RESUMO

The surface plasmon resonance technique in combination with whole cell sensing is used for the first time for real-time label-free monitoring of nanoparticle cell uptake. The uptake kinetics of several types of nanoparticles relevant to drug delivery applications into HeLa cells is determined. The cell uptake of the nanoparticles is confirmed by confocal microscopy. The cell uptake of silica nanoparticles and polyethylenimine-plasmid DNA polyplexes is studied as a function of temperature, and the uptake energies are determined by Arrhenius plots. The phase transition temperature of the HeLa cell membrane is detected when monitoring cell uptake of silica nanoparticles at different temperatures. The HeLa cell uptake of the mesoporous silica nanoparticles is energy-independent at temperatures slightly higher than the phase transition temperature of the HeLa cell membrane, while the uptake of polyethylenimine-DNA polyplexes is energy-dependent and linear as a function of temperature with an activation energy of Ea = 62 ± 7 kJ mol-1 = 15 ± 2 kcal mol-1 . The HeLa cell uptake of red blood cell derived extracellular vesicles is also studied as a function of the extracellular vesicle concentration. The results show a concentration dependent behavior reaching a saturation level of the extracellular vesicle uptake by HeLa cells.


Assuntos
Nanopartículas/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Células HeLa , Humanos , Cinética , Dióxido de Silício , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...