Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37750680

RESUMO

Generating specific, robust protective responses to different bacteria is vital for animal survival. Here, we address the role of transforming growth factor ß (TGF-ß) member DBL-1 in regulating signature host defense responses in Caenorhabditis elegans to human opportunistic Gram-negative and Gram-positive pathogens. Canonical DBL-1 signaling is required to suppress avoidance behavior in response to Gram-negative, but not Gram-positive bacteria. We propose that in the absence of DBL-1, animals perceive some bacteria as more harmful. Animals activate DBL-1 pathway activity in response to Gram-negative bacteria and strongly repress it in response to select Gram-positive bacteria, demonstrating bacteria-responsive regulation of DBL-1 signaling. DBL-1 signaling differentially regulates expression of target innate immunity genes depending on the bacterial exposure. These findings highlight a central role for TGF-ß in tailoring a suite of bacteria-specific host defenses.


Assuntos
Proteínas de Caenorhabditis elegans , Neuropeptídeos , Animais , Humanos , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Neuropeptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Transdução de Sinais , Bactérias Gram-Positivas/metabolismo
2.
J Vis Exp ; (184)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35758710

RESUMO

Genomic DNA extraction from single or a few Caenorhabditis elegans has many downstream applications, including PCR for genotyping lines, cloning, and sequencing. The traditional proteinase K-based methods for genomic DNA extraction from C. elegans take several hours. Commercial extraction kits that effectively break open the C. elegans cuticle and extract genomic DNA are limited. An easy, faster (~15 min), and cost-efficient method of extracting C. elegans genomic DNA that works well for classroom and research applications is reported here. This DNA extraction method is optimized to use single or a few late-larval (L4) or adult nematodes as starting material for obtaining a reliable template to perform PCR. The results indicate that the DNA quality is suitable for amplifying gene targets of different sizes by PCR, permitting genotyping of single or a few animals even at dilutions to one-fiftieth of the genomic DNA from a single adult per reaction. The reported protocols can be reliably used to quickly produce DNA template from a single or a small sample of C. elegans for PCR-based applications.


Assuntos
Caenorhabditis elegans , DNA , Animais , Caenorhabditis elegans/genética , Genoma , Genômica , Reação em Cadeia da Polimerase
3.
Genes Immun ; 21(5): 301-310, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32770079

RESUMO

Animals counter specific environmental challenges with a combination of broad and tailored host responses. One protein family enlisted in the innate immune response includes the saposin-like antimicrobial proteins. We investigated the expression of a Caenorhabditis elegans saposin-like gene, spp-9, in response to different stresses. spp-9 expression was detected in the intestine and six amphid neurons, including AWB and AWC. spp-9 expression is increased in response to starvation stress. In addition, we discovered pathogen-specific regulation of spp-9 that was not clearly demarcated by Gram nature of the bacterial challenge. Multiple molecular innate immune response pathways, including DBL-1/TGF-ß-like, insulin-like, and p38/MAPK, regulate expression of spp-9. Our results suggest spp-9 is involved in targeted responses to a variety of abiotic and bacterial challenges that are coordinated by multiple signaling pathways.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Imunidade Inata , Saposinas/metabolismo , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Sistema de Sinalização das MAP Quinases , Neuropeptídeos/metabolismo , Saposinas/genética , Estresse Fisiológico , Fator de Crescimento Transformador beta/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Mol Biol Cell ; 30(26): 3151-3160, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31693440

RESUMO

Bone morphogenetic protein (BMP) signaling pathways control many developmental and homeostatic processes, including cell size and extracellular matrix remodeling. An understanding of how this pathway itself is controlled remains incomplete. To identify novel regulators of BMP signaling, we performed a forward genetic screen in Caenorhabditis elegans for genes involved in body size regulation, a trait under the control of BMP member DBL-1. We isolated mutations that suppress the long phenotype of lon-2, a gene that encodes a negative regulator that sequesters DBL-1. This screen was effective because we isolated alleles of several core components of the DBL-1 pathway, demonstrating the efficacy of the screen. We found additional alleles of previously identified but uncloned body size genes. Our screen also identified widespread involvement of extracellular matrix proteins in DBL-1 regulation of body size. We characterized interactions between the DBL-1 pathway and extracellular matrix and other genes that affect body morphology. We discovered that loss of some of these genes affects the DBL-1 pathway, and we provide evidence that DBL-1 signaling affects many molecular and cellular processes associated with body size. We propose a model in which multiple body size factors are controlled by signaling through the DBL-1 pathway and by DBL-1-independent processes.


Assuntos
Tamanho Corporal/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Neuropeptídeos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Proteínas de Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Glipicanas/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...