Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(5): 8172-8188, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38439481

RESUMO

Fiber-coupled microdisks are a promising platform for enhancing the spontaneous emission from color centers in diamond. The measured cavity-enhanced emission from the microdisk is governed by the effective volume (V) of each cavity mode, the cavity quality factor (Q), and the coupling between the microdisk and the fiber. Here we observe room temperature photoluminescence from an ensemble of nitrogen-vacancy centers into high Q/V microdisk modes, which when combined with coherent spectroscopy of the microdisk modes, allows us to elucidate the relative contributions of these factors. The broad emission spectrum acts as an internal light source facilitating mode identification over several cavity free spectral ranges. Analysis of the fiber taper collected microdisk emission reveals spectral filtering both by the cavity and the fiber taper, the latter of which we find preferentially couples to higher-order microdisk modes. Coherent mode spectroscopy is used to measure Q ∼ 1 × 105 - the highest reported values for diamond microcavities operating at visible wavelengths. With realistic optimization of the microdisk dimensions, we predict that Purcell factors of ∼50 are within reach.

2.
Nat Commun ; 12(1): 663, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510152

RESUMO

Mechanical systems are one of the promising platforms for classical and quantum information processing and are already widely-used in electronics and photonics. Cavity optomechanics offers many new possibilities for information processing using mechanical degrees of freedom; one of them is storing optical signals in long-lived mechanical vibrations by means of optomechanically induced transparency. However, the memory storage time is limited by intrinsic mechanical dissipation. More over, in-situ control and manipulation of the stored signals processing has not been demonstrated. Here, we address both of these limitations using a multi-mode cavity optomechanical memory. An additional optical field coupled to the memory modifies its dynamics through time-varying parametric feedback. We demonstrate that this can extend the memory decay time by an order of magnitude, decrease its effective mechanical dissipation rate by two orders of magnitude, and deterministically shift the phase of a stored field by over 2π. This further expands the information processing toolkit provided by cavity optomechanics.

3.
Nat Commun ; 11(1): 2208, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371992

RESUMO

Efficient switching and routing of photons of different wavelengths is a requirement for realizing a quantum internet. Multimode optomechanical systems can solve this technological challenge and enable studies of fundamental science involving widely separated wavelengths that are inaccessible to single-mode optomechanical systems. To this end, we demonstrate interference between two optomechanically induced transparency processes in a diamond on-chip cavity. This system allows us to directly observe the dynamics of an optomechanical dark mode that interferes photons at different wavelengths via their mutual coupling to a common mechanical resonance. This dark mode does not transfer energy to the dissipative mechanical reservoir and is predicted to enable quantum information processing applications that are insensitive to mechanical decoherence. Control of the dark mode is also utilized to demonstrate all-optical, two-colour switching and interference with light separated by over 5 THz in frequency.

4.
Nano Lett ; 19(2): 1343-1350, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30676758

RESUMO

Hexagonal boron nitride (hBN) is an emerging layered material that plays a key role in a variety of two-dimensional devices, and has potential applications in nanophotonics and nanomechanics. Here, we demonstrate the first cavity optomechanical system incorporating hBN. Nanomechanical resonators consisting of hBN beams with average dimensions of 12 µm × 1.2 µm × 28 nm and minimum predicted thickness of 8 nm were fabricated using electron beam induced etching and positioned in the optical near-field of silicon microdisk cavities. Of the multiple devices studied here a maximum 0.16 pm/[Formula: see text] sensitivity to the hBN nanobeam motion is demonstrated, allowing observation of thermally driven mechanical resonances with frequencies between 1 and 23 MHz, and largest mechanical quality factor of 1100 for a 23 MHz mode, at room temperature in high vacuum. In addition, the role of air damping is studied via pressure dependent measurements. Our results constitute an important step toward realizing integrated optomechanical circuits employing hBN.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...