Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 33(19): 4069-4084.e8, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37683643

RESUMO

Plant roots originated independently in lycophytes and euphyllophytes, whereas early vascular plants were rootless. The organization of the root apical meristem in euphyllophytes is well documented, especially in the model plant Arabidopsis. However, little is known about lycophyte roots and their molecular innovations during evolution. In this study, spatial transcriptomics was used to detect 97 root-related genes in the roots of the lycophyte Selaginella moellendorffii. A high number of genes showed expression patterns similar to what has been reported for seed plants, supporting the idea of a highly convergent evolution of mechanisms to control root development. Interaction and complementation data of SHORTROOT (SHR) and SCARECROW (SCR) homologs, furthermore, support a comparable regulation of the ground tissue (GT) between euphyllophytes and lycophytes. Root cap formation, in contrast, appears to be differently regulated. Several experiments indicated an important role of the WUSCHEL-RELATED HOMEOBOX13 gene SmWOX13a in Selaginella root cap formation. In contrast to multiple Arabidopsis WOX paralogs, SmWOX13a is able to induce root cap cells in Arabidopsis and has functionally conserved homologs in the fern Ceratopteris richardii. Lycophytes and a part of the euphyllophytes, therefore, may share a common mechanism regulating root cap formation, which was diversified or lost during seed plant evolution. In summary, we here provide a new spatial data resource for the Selaginella root, which in general advocates for conserved mechanisms to regulate root development but shows a clear divergence in the control of root cap formation, with a novel putative role of WOX genes in root cap formation in non-seed plants.


Assuntos
Arabidopsis , Raízes de Plantas , Arabidopsis/genética , Transcriptoma , Meristema , Plantas/genética , Regulação da Expressão Gênica de Plantas
2.
Curr Biol ; 33(5): R170-R175, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36917935

RESUMO

Plants have evolved a remarkable capacity to develop new organs post-embryonically throughout their lifespan. A prime example of this is root branching. Root branching occurs in two ways: dichotomous and lateral branching. The dichotomous branching is the result of the division of the root apical meristem into two daughter meristems, likely through symmetric cell divisions of the root apical cell, as has recently been illustrated in the extant lycophyte Selaginella moellendorffii (Figure 1). Lateral root branching relies on the de novo specification of a subset of founder cells (hereinafter referred to as lateral root stem cells) located in the internal tissues of an existing root. This step is followed by initiation, in which the specified cells re-enter the cell cycle, and subsequently by primordium formation and emergence. In this primer, we summarize recent advances describing the molecular bases underlying lateral root stem cell specification in angiosperms and highlight the important positional signals that fine tune this process. By delving into the evolutionary origins of root branching, we point out that positional control of lateral root stem cell specification has not been the prevailing mechanism among all plants and discuss the process in ferns (i.e., a sister group of seed plants), where it seems to be under the control of lineage-dependent mechanisms.


Assuntos
Ácidos Indolacéticos , Raízes de Plantas , Raízes de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Plantas/metabolismo , Divisão Celular
3.
J Exp Bot ; 72(20): 7107-7118, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34329421

RESUMO

Adventitious rooting is a de novo organogenesis process that enables plants to propagate clonally and cope with environmental stresses. Adventitious root initiation (ARI) is controlled by interconnected transcriptional and hormonal networks, but there is little knowledge of the genetic and molecular programs orchestrating these networks. Thus, we have applied genome-wide transcriptome profiling to elucidate the transcriptional reprogramming events preceding ARI. These reprogramming events are associated with the down-regulation of cytokinin (CK) signaling and response genes, which could be triggers for ARI. Interestingly, we found that CK free base (iP, tZ, cZ, and DHZ) content declined during ARI, due to down-regulation of de novo CK biosynthesis and up-regulation of CK inactivation pathways. We also found that MYC2-dependent jasmonate (JA) signaling inhibits ARI by down-regulating the expression of the CYTOKININ OXIDASE/DEHYDROGENASE1 (CKX1) gene. We also demonstrated that JA and CK synergistically activate expression of the transcription factor RELATED to APETALA2.6 LIKE (RAP2.6L), and constitutive expression of this transcription factor strongly inhibits ARI. Collectively, our findings reveal that previously unknown genetic interactions between JA and CK play key roles in ARI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos , Regulação da Expressão Gênica de Plantas , Oxilipinas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Front Plant Sci ; 12: 637352, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33790927

RESUMO

Plant responses to flooding, submergence and waterlogging are important for adaptation to climate change environments. Therefore, the characterization of the molecular mechanisms activated under hypoxic and anoxic conditions might lead to low oxygen resilient crops. Although in mammalian systems prolyl 4 hydroxylases (P4Hs) are involved in the oxygen sensing pathway, their role in plants under low oxygen has not been extensively investigated. In this report, an Arabidopsis AtP4H3 T-DNA knock out mutant line showed higher sensitivity to anoxic treatment possibly due to lower induction of the fermentation pathway genes, ADH and PDC1, and of sucrose synthases, SUS1 and SUS4. This sensitivity to anoxia was accompanied by lower protein levels of AGPs-bound epitopes such as LM14 in the mutant line and induction of extensins-bound epitopes, while the expression levels of the majority of the AGPs genes were stable throughout a low oxygen time course. The lower AGPs content might be related to altered frequency of proline hydroxylation occurrence in the p4h3 line. These results indicate active involvement of proline hydroxylation, a post-translational modification, to low oxygen response in Arabidopsis.

5.
Front Plant Sci ; 11: 586140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33014006

RESUMO

Vegetative propagation relies on the capacity of plants to regenerate de novo adventitious roots (ARs), a quantitative trait controlled by the interaction of endogenous factors, such as hormones and environmental cues among which light plays a central role. However, the physiological and molecular components mediating light cues during AR initiation (ARI) remain largely elusive. Here, we explored the role of red light (RL) on ARI in de-rooted Norway spruce seedlings. We combined investigation of hormone metabolism and gene expression analysis to identify potential signaling pathways. We also performed extensive anatomical characterization to investigate ARI at the cellular level. We showed that in contrast to white light, red light promoted ARI likely by reducing jasmonate (JA) and JA-isoleucine biosynthesis and repressing the accumulation of isopentyl-adenine-type cytokinins. We demonstrated that exogenously applied JA and/or CK inhibit ARI in a dose-dependent manner and found that they possibly act in the same pathway. The negative effect of JA on ARI was confirmed at the histological level. We showed that JA represses the early events of ARI. In conclusion, RL promotes ARI by repressing the accumulation of the wound-induced phytohormones JA and CK.

6.
New Phytol ; 228(5): 1611-1626, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32634250

RESUMO

Adventitious root initiation (ARI) is a de novo organogenesis program and a key adaptive trait in plants. Several hormones regulate ARI but the underlying genetic architecture that integrates the hormonal crosstalk governing this process remains largely elusive. In this study, we use genetics, genome editing, transcriptomics, hormone profiling and cell biological approaches to demonstrate a crucial role played by the APETALA2/ETHYLENE RESPONSE FACTOR 115 transcription factor. We demonstrate that ERF115 functions as a repressor of ARI by activating the cytokinin (CK) signaling machinery. We also demonstrate that ERF115 is transcriptionally activated by jasmonate (JA), an oxylipin-derived phytohormone, which represses ARI in NINJA-dependent and independent manners. Our data indicate that NINJA-dependent JA signaling in pericycle cells blocks early events of ARI. Altogether, our results reveal a previously unreported molecular network involving cooperative crosstalk between JA and CK machineries that represses ARI.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Citocininas , Etilenos , Regulação da Expressão Gênica de Plantas , Oxilipinas/farmacologia , Raízes de Plantas/metabolismo , Fatores de Transcrição
7.
Methods Mol Biol ; 2085: 3-22, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31734913

RESUMO

The root system and its architecture enormously contribute to plant survival and adaptation to the environment. Depending on the intrinsic genetic information and the surrounding rhizosphere, plants develop a highly plastic root system, which is a critical determinant for survival. Plant root system, which includes primary root (PR), lateral roots (LR) and adventitious roots (AR), is shaped by tightly controlled developmental programs. Phytohormones are the main signaling components that orchestrate and coordinate the genetic information and the external stimuli to shape the root system patterning or rhizotaxis. Besides their role in plant stress responses and defense against herbivory and pathogen attacks, jasmonic acid and its derivatives, including the receptor-active conjugate jasmonoyl-L-isoleucine (JA-Ile), emerge as potential regulators of rhizotaxis. In this chapter, we summarize and discuss the recent progress achieved during the recent years to understand the JA-mediated genetic and molecular networks guiding PR, LR, and AR initiation. We highlight the role of JAs as critical integrators in shaping rhizotaxis.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Rizosfera , Transporte Biológico , Vias Biossintéticas , Ciclopentanos/química , Meio Ambiente , Oxilipinas/química , Fenótipo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais
8.
Mol Plant ; 12(11): 1499-1514, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31520787

RESUMO

In Arabidopsis thaliana, canonical auxin-dependent gene regulation is mediated by 23 transcription factors from the AUXIN RESPONSE FACTOR (ARF) family that interact with auxin/indole acetic acid repressors (Aux/IAAs), which themselves form co-receptor complexes with one of six TRANSPORT INHIBITOR1/AUXIN-SIGNALLING F-BOX (TIR1/AFB) proteins. Different combinations of co-receptors drive specific sensing outputs, allowing auxin to control a myriad of processes. ARF6 and ARF8 are positive regulators of adventitious root initiation upstream of jasmonate, but the exact auxin co-receptor complexes controlling the transcriptional activity of these proteins has remained unknown. Here, using loss-of-function mutants we show that three Aux/IAA genes, IAA6, IAA9, and IAA17, act additively in the control of adventitious root (AR) initiation. These three IAA proteins interact with ARF6 and/or ARF8 and likely repress their activity in AR development. We show that TIR1 and AFB2 are positive regulators of AR formation and TIR1 plays a dual role in the control of jasmonic acid (JA) biosynthesis and conjugation, as several JA biosynthesis genes are up-regulated in the tir1-1 mutant. These results lead us to propose that in the presence of auxin, TIR1 and AFB2 form specific sensing complexes with IAA6, IAA9, and/or IAA17 to modulate JA homeostasis and control AR initiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Proteínas F-Box/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Receptores de Superfície Celular/metabolismo , Transdução de Sinais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Hipocótilo/metabolismo , Estabilidade Proteica
9.
Int J Mol Sci ; 20(18)2019 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-31505771

RESUMO

Adventitious rooting is a post-embryonic developmental program governed by a multitude of endogenous and environmental cues. Auxin, along with other phytohormones, integrates and translates these cues into precise molecular signatures to provide a coherent developmental output. Auxin signaling guides every step of adventitious root (AR) development from the early event of cell reprogramming and identity transitions until emergence. We have previously shown that auxin signaling controls the early events of AR initiation (ARI) by modulating the homeostasis of the negative regulator jasmonate (JA). Although considerable knowledge has been acquired about the role of auxin and JA in ARI, the genetic components acting downstream of JA signaling and the mechanistic basis controlling the interaction between these two hormones are not well understood. Here we provide evidence that COI1-dependent JA signaling controls the expression of DAO1 and its closely related paralog DAO2. In addition, we show that the dao1-1 loss of function mutant produces more ARs than the wild type, probably due to its deficiency in accumulating JA and its bioactive metabolite JA-Ile. Together, our data indicate that DAO1 controls a sensitive feedback circuit that stabilizes the auxin and JA crosstalk during ARI.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredutases/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Oxirredutases/genética , Raízes de Plantas/genética , Transdução de Sinais
10.
Physiol Plant ; 165(1): 90-100, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30159890

RESUMO

Plants have evolved sophisticated root systems that help them to cope with harsh environmental conditions. They are typically composed of a primary root and lateral roots (LRs), but may also include adventitious roots (ARs). Unlike LRs, ARs may be initiated not only from pericycle cells, but from various cell types and tissues depending on the species. Phytohormones, together with many other internal and external stimuli, coordinate and guide every step of AR formation from the first event of cell reprogramming until emergence and outgrowth. In this review, we summarize recent advances in the molecular mechanisms controlling AR formation and highlight the main hormonal cross talk involved in its regulation under different conditions and in different model systems.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brassinosteroides/metabolismo , Ciclopentanos/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Ácidos Indolacéticos/metabolismo , Oxilipinas/metabolismo
11.
Sci Rep ; 7(1): 6435, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729662

RESUMO

A correction to this article has been published and is linked from the HTML version of this paper. The error has been fixed in the paper.

12.
Sci Rep ; 7(1): 628, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28377589

RESUMO

The COP9 signalosome (CSN) is an evolutionary conserved multiprotein complex that regulates many aspects of plant development by controlling the activity of CULLIN-RING E3 ubiquitin ligases (CRLs). CRLs ubiquitinate and target for proteasomal degradation a vast number of specific substrate proteins involved in many developmental and physiological processes, including light and hormone signaling and cell division. As a consequence of CSN pleiotropic function, complete loss of CSN activity results in seedling lethality. Therefore, a detailed analysis of CSN physiological functions in adult Arabidopsis plants has been hampered by the early seedling lethality of csn null mutants. Here we report the identification and characterization of a viable allele of the Arabidopsis COP9 signalosome subunit 4 (CSN4). The allele, designated csn4-2035, suppresses the adventitious root (AR) phenotype of the Arabidopsis superroot2-1 mutant, potentially by altering its auxin signaling. Furthermore, we show that although the csn4-2035 mutation affects primary and lateral root (LR) formation in the 2035 suppressor mutant, CSN4 and other subunits of the COP9 complex seem to differentially control AR and LR development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...