Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38553327

RESUMO

BACKGROUND: Depressive symptoms are associated with an increased risk of Alzheimer's disease (AD). There has been a recent emergence in plasma biomarkers for AD pathophysiology, such as amyloid-beta (Aß) and phosphorylated tau (p-tau), as well as for axonal damage (neurofilament light, NfL) and astrocytic activation (glial fibrillary acidic protein, GFAP). Hypothesizing that depressive symptoms may occur along the AD process, we investigated associations between plasma biomarkers of AD with depressive symptoms in individuals without dementia. METHODS: A two-stage meta-analysis was performed on 2 clinic-based and 6 population-based cohorts (N = 7210) as part of the Netherlands Consortium of Dementia Cohorts. Plasma markers (Aß42/40, p-tau181, NfL, and GFAP) were measured using Single Molecular Array (Simoa; Quanterix) assays. Depressive symptoms were measured with validated questionnaires. We estimated the cross-sectional association of each standardized plasma marker (determinants) with standardized depressive symptoms (outcome) using linear regressions, correcting for age, sex, education, and APOE ε4 allele presence, as well as subgrouping by sex and APOE ε4 allele. Effect estimates were entered into a random-effects meta-analysis. RESULTS: Mean age of participants was 71 years. The prevalence of clinically relevant depressive symptoms ranged from 1% to 22%. None of the plasma markers were associated with depressive symptoms in the meta-analyses. However, NfL was associated with depressive symptoms only in APOE ε4 carriers (ß 0.11; 95% CI: 0.05-0.17). CONCLUSIONS: Late-life depressive symptoms did not show an association to plasma biomarkers of AD pathology. However, in APOE ε4 allele carriers, a more profound role of neurodegeneration was suggested with depressive symptoms.

2.
Rheumatology (Oxford) ; 62(4): 1669-1676, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36040165

RESUMO

OBJECTIVES: To present an unbiased approach to identify positional transcript single nucleotide polymorphisms (SNPs) of osteoarthritis (OA) risk loci by allelic expression imbalance (AEI) analyses using RNA sequencing of articular cartilage and subchondral bone from OA patients. METHODS: RNA sequencing from 65 articular cartilage and 24 subchondral bone from OA patients was used for AEI analysis. AEI was determined for all genes present in the 100 regions reported by the genome-wide association studies (GWAS) catalog that were also expressed in cartilage or bone. The count fraction of the alternative allele (φ) was calculated for each heterozygous individual with the risk SNP or with the SNP in linkage disequilibrium (LD) with it (r2 > 0.6). Furthermore, a meta-analysis was performed to generate a meta-φ (null hypothesis median φ = 0.49) and P-value for each SNP. RESULTS: We identified 30 transcript SNPs (28 in cartilage and two in subchondral bone) subject to AEI in 29 genes. Notably, 10 transcript SNPs were located in genes not previously reported in the GWAS catalog, including two long intergenic non-coding RNAs (lincRNAs), MALAT1 (meta-φ = 0.54, FDR = 1.7×10-4) and ILF3-DT (meta-φ = 0.6, FDR = 1.75×10-5). Moreover, 12 drugs were interacting with seven genes displaying AEI, of which seven drugs have been already approved. CONCLUSIONS: By prioritizing proxy transcript SNPs that mark AEI in cartilage and/or subchondral bone at loci harbouring GWAS signals, we present an unbiased approach to identify the most likely functional OA risk-SNP and gene. We identified 10 new potential OA risk genes ready for further translation towards underlying biological mechanisms.


Assuntos
Cartilagem Articular , Osteoartrite , Humanos , Cartilagem Articular/metabolismo , Estudo de Associação Genômica Ampla , Osteoartrite/genética , Osteoartrite/metabolismo , Alelos
3.
Rheumatology (Oxford) ; 62(1): 457-466, 2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-35383365

RESUMO

OBJECTIVES: To investigate whether the deiodinase inhibitor iopanoic acid (IOP) has chondroprotective properties, a mechanical stress induced model of human aged explants was used to test both repeated dosing and slow release of IOP. METHODS: Human osteochondral explants subjected to injurious mechanical stress (65%MS) were treated with IOP or IOP encapsulated in poly lactic-co-glycolic acid-polyethylene glycol nanoparticles (NP-IOP). Changes to cartilage integrity and signalling were determined by Mankin scoring of histology, sulphated glycosaminoglycan (sGAG) release and expression levels of catabolic, anabolic and hypertrophic markers. Subsequently, on a subgroup of samples, RNA sequencing was performed on 65%MS (n = 14) and 65%MS+IOP (n = 7) treated cartilage to identify IOP's mode of action. RESULTS: Damage from injurious mechanical stress was confirmed by increased cartilage surface damage in the Mankin score, increased sGAG release, and consistent upregulation of catabolic markers and downregulation of anabolic markers. IOP and, though less effective, NP-IOP treatment, reduced MMP13 and increased COL2A1 expression. In line with this, IOP and NP-IOP reduced cartilage surface damage induced by 65%MS, while only IOP reduced sGAG release from explants subjected to 65%MS. Lastly, differential expression analysis identified 12 genes in IOP's mode of action to be mainly involved in reducing metabolic processes (INSIG1, DHCR7, FADS1 and ACAT2) and proliferation and differentiation (CTGF, BMP5 and FOXM1). CONCLUSION: Treatment with the deiodinase inhibitor IOP reduced detrimental changes of injurious mechanical stress. In addition, we identified that its mode of action was likely on metabolic processes, cell proliferation and differentiation.


Assuntos
Cartilagem Articular , Glândula Tireoide , Humanos , Glândula Tireoide/metabolismo , Iodeto Peroxidase/metabolismo , Iodeto Peroxidase/farmacologia , Transdução de Sinais , Cartilagem Articular/metabolismo , Condrócitos/metabolismo
4.
Rheumatology (Oxford) ; 61(7): 3023-3032, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34730803

RESUMO

OBJECTIVE: To gain insight in the expression profile of long non-coding RNAs (lncRNAs) in OA subchondral bone. METHODS: RNA sequencing data of macroscopically preserved and lesioned OA subchondral bone of patients that underwent joint replacement surgery due to OA (N = 22 pairs; 5 hips, 17 knees, Research osteoArthrits Articular Tissue (RAAK study) was run through an in-house pipeline to detect expression of lncRNAs. Differential expression analysis between preserved and lesioned bone was performed. Spearman correlations were calculated between differentially expressed lncRNAs and differentially expressed mRNAs identified previously in the same samples. Primary osteogenic cells were transfected with locked nucleic acid (LNA) GapmeRs targeting AC005165.1 lncRNA, to functionally investigate its potential mRNA targets. RESULTS: In total, 2816 lncRNAs were well-expressed in subchondral bone and we identified 233 lncRNAs exclusively expressed in knee and 307 lncRNAs exclusively in hip. Differential expression analysis, using all samples (N = 22 pairs; 5 hips, 17 knees), resulted in 21 differentially expressed lncRNAs [false discovery rate (FDR) < 0.05, fold change (FC) range 1.19-7.39], including long intergenic non-protein coding RNA (LINC) 1411 (LINC01411, FC = 7.39, FDR = 2.20 × 10-8), AC005165.1 (FC = 0.44, FDR = 2.37 × 10-6) and empty spiracles homeobox 2 opposite strand RNA (EMX2OS, FC = 0.41, FDR = 7.64 × 10-3). Among the differentially expressed lncRNAs, five were also differentially expressed in articular cartilage, including AC005165.1, showing similar direction of effect. Downregulation of AC005165.1 in primary osteogenic cells resulted in consistent downregulation of highly correlated frizzled related protein (FRZB). CONCLUSION: The current study identified a novel lncRNA, AC005165.1, being dysregulated in OA articular cartilage and subchondral bone. Downregulation of AC005165.1 caused a decreased expression of OA risk gene FRZB, an important member of the wnt pathway, suggesting that AC005165.1 could be an attractive potential therapeutic target with effects in articular cartilage and subchondral bone.


Assuntos
Cartilagem Articular , Peptídeos e Proteínas de Sinalização Intracelular , Osteoartrite do Joelho , Osteoartrite , RNA Longo não Codificante , Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Articulação do Joelho/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite do Joelho/diagnóstico , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/cirurgia , RNA Longo não Codificante/genética , RNA Mensageiro/genética
5.
Biomolecules ; 11(9)2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34572569

RESUMO

OBJECTIVE: To identify and validate circulating micro RNAs (miRNAs) that mark gene expression changes in articular cartilage early in osteoarthritis (OA) pathophysiology process. METHODS: Within the ongoing RAAK study, human preserved OA cartilage and plasma (N = 22 paired samples) was collected for RNA sequencing (respectively mRNA and miRNA). Spearman correlation was determined for 114 cartilage genes consistently and significantly differentially expressed early in osteoarthritis and 384 plasma miRNAs. Subsequently, the minimal number of circulating miRNAs serving to discriminate between progressors and non-progressors was assessed by regression analysis and area under receiver operating curves (AUC) was calculated with progression data and plasma miRNA sequencing from the GARP study (N = 71). RESULTS: We identified strong correlations (ρ ≥ |0.7|) among expression levels of 34 unique plasma miRNAs and 21 genes, including 4 genes that correlated with multiple miRNAs. The strongest correlation was between let-7d-5p and EGFLAM (ρ = -0.75, P = 6.9 × 10-5). Regression analysis of the 34 miRNAs resulted in a set of 7 miRNAs that, when applied to the GARP study, demonstrated clinically relevant predictive value with AUC > 0.8 for OA progression over 2 years and near-clinical value for progression over 5 years- (AUC = 0.8). CONCLUSIONS: We show that plasma miRNAs levels reflect gene expression levels in cartilage and can be exploited to represent ongoing pathophysiological processes in articular cartilage. We advocate that identified signature of 7 plasma miRNAs can contribute to direct further studies toward early biomarkers predictive for progression of osteoarthritis over 2 and 5 years.


Assuntos
Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , MicroRNA Circulante/sangue , MicroRNA Circulante/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Osteoartrite/sangue , Osteoartrite/genética , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , MicroRNA Circulante/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas/genética , Curva ROC
6.
Rheumatol Ther ; 8(1): 499-515, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33608843

RESUMO

INTRODUCTION: Likely due to ignored heterogeneity in disease pathophysiology, osteoarthritis (OA) has become the most common disabling joint disease, without effective disease-modifying treatment causing a large social and economic burden. In this study we set out to explore responses of aged human osteochondral explants upon different OA-related perturbing triggers (inflammation, hypertrophy and mechanical stress) for future tailored biomimetic human models. METHODS: Human osteochondral explants were treated with IL-1ß (10 ng/ml) or triiodothyronine (T3; 10 nM) or received 65% strains of mechanical stress (65% MS). Changes in chondrocyte signalling were determined by expression levels of nine genes involved in catabolism, anabolism and hypertrophy. Breakdown of cartilage was measured by sulphated glycosaminoglycans (sGAGs) release, scoring histological changes (Mankin score) and mechanical properties of cartilage. RESULTS: All three perturbations (IL-1ß, T3 and 65% MS) resulted in upregulation of the catabolic genes MMP13 and EPAS1. IL-1ß abolished COL2A1 and ACAN gene expression and increased cartilage degeneration, reflected by increased Mankin scores and sGAGs released. Treatment with T3 resulted in a high and significant upregulation of the hypertrophic markers COL1A1, COL10A1 and ALPL. However, 65% MS increased sGAG release and detrimentally altered mechanical properties of cartilage. CONCLUSION: We present consistent and specific output on three different triggers of OA. Perturbation with the pro-inflammatory IL-1ß mainly induced catabolic chondrocyte signalling and cartilage breakdown, while T3 initiated expression of hypertrophic and mineralization markers. Mechanical stress at a strain of 65% induced catabolic chondrocyte signalling and changed cartilage matrix integrity. The major strength of our ex vivo models was that they considered aged, preserved, human cartilage of a heterogeneous OA patient population. As a result, the explants may reflect a reliable biomimetic model prone to OA onset allowing for development of different treatment modalities.

7.
Rheumatology (Oxford) ; 60(3): 1166-1175, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32885253

RESUMO

OBJECTIVE: To identify OA subtypes based on cartilage transcriptomic data in cartilage tissue and characterize their underlying pathophysiological processes and/or clinically relevant characteristics. METHODS: This study includes n = 66 primary OA patients (41 knees and 25 hips), who underwent a joint replacement surgery, from which macroscopically unaffected (preserved, n = 56) and lesioned (n = 45) OA articular cartilage were collected [Research Arthritis and Articular Cartilage (RAAK) study]. Unsupervised hierarchical clustering analysis on preserved cartilage transcriptome followed by clinical data integration was performed. Protein-protein interaction (PPI) followed by pathway enrichment analysis were done for genes significant differentially expressed between subgroups with interactions in the PPI network. RESULTS: Analysis of preserved samples (n = 56) resulted in two OA subtypes with n = 41 (cluster A) and n = 15 (cluster B) patients. The transcriptomic profile of cluster B cartilage, relative to cluster A (DE-AB genes) showed among others a pronounced upregulation of multiple genes involved in chemokine pathways. Nevertheless, upon investigating the OA pathophysiology in cluster B patients as reflected by differentially expressed genes between preserved and lesioned OA cartilage (DE-OA-B genes), the chemokine genes were significantly downregulated with OA pathophysiology. Upon integrating radiographic OA data, we showed that the OA phenotype among cluster B patients, relative to cluster A, may be characterized by higher joint space narrowing (JSN) scores and low osteophyte (OP) scores. CONCLUSION: Based on whole-transcriptome profiling, we identified two robust OA subtypes characterized by unique OA, pathophysiological processes in cartilage as well as a clinical phenotype. We advocate that further characterization, confirmation and clinical data integration is a prerequisite to allow for development of treatments towards personalized care with concurrently more effective treatment response.


Assuntos
Perfilação da Expressão Gênica , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , RNA Mensageiro/metabolismo , Idoso , Cartilagem Articular/metabolismo , Análise por Conglomerados , Regulação para Baixo , Feminino , Humanos , Masculino , Análise em Microsséries , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , Fenótipo , Regulação para Cima
8.
Arthritis Rheumatol ; 73(5): 789-799, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33258547

RESUMO

OBJECTIVE: To identify key determinants of the interactive pathophysiologic processes in subchondral bone and cartilage in osteoarthritis (OA). METHODS: We performed RNA sequencing on macroscopically preserved and lesional OA subchondral bone from patients in the Research Arthritis and Articular Cartilage study who underwent joint replacement surgery due to OA (n = 24 sample pairs: 6 hips and 18 knees). Unsupervised hierarchical clustering and differential expression analyses were conducted. Results were combined with data on previously identified differentially expressed genes in cartilage (partly overlapping samples) as well as data on recently identified OA risk genes. RESULTS: We identified 1,569 genes that were significantly differentially expressed between lesional and preserved subchondral bone, including CNTNAP2 (fold change [FC] 2.4, false discovery rate [FDR] 3.36 × 10-5 ) and STMN2 (FC 9.6, FDR 2.36 × 10-3 ). Among these 1,569 genes, 305 were also differentially expressed, and with the same direction of effect, in cartilage, including the recently recognized OA susceptibility genes IL11 and CHADL. Upon differential expression analysis with stratification for joint site, we identified 509 genes that were exclusively differentially expressed in subchondral bone of the knee, including KLF11 and WNT4. These genes that were differentially expressed exclusively in the knee were enriched for involvement in epigenetic processes, characterized by, e.g., HIST1H3J and HIST1H3H. CONCLUSION: IL11 and CHADL were among the most consistently differentially expressed genes OA pathophysiology-related genes in both bone and cartilage. As these genes were recently also identified as robust OA risk genes, they classify as attractive therapeutic targets acting on 2 OA-relevant tissues.


Assuntos
Osso e Ossos/metabolismo , Cartilagem Articular/metabolismo , Proteínas da Matriz Extracelular/genética , Interleucina-11/genética , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose/genética , Análise por Conglomerados , Feminino , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/genética , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/cirurgia , RNA Mensageiro/metabolismo , RNA-Seq , Proteínas Repressoras/genética , Estatmina/genética , Proteína Wnt4/genética
9.
Arthritis Rheumatol ; 72(11): 1845-1854, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32840049

RESUMO

OBJECTIVE: To identify robustly differentially expressed long noncoding RNAs (lncRNAs) with osteoarthritis (OA) pathophysiology in cartilage and to explore potential target messenger RNA (mRNA) by establishing coexpression networks, followed by functional validation. METHODS: RNA sequencing was performed on macroscopically lesioned and preserved OA cartilage from patients who underwent joint replacement surgery due to OA (n = 98). Differential expression analysis was performed on lncRNAs that were annotated in GENCODE and Ensembl databases. To identify potential interactions, correlations were calculated between the identified differentially expressed lncRNAs and the previously reported differentially expressed protein-coding genes in the same samples. Modulation of chondrocyte lncRNA expression was achieved using locked nucleic acid GapmeRs. RESULTS: By applying our in-house pipeline, we identified 5,053 lncRNAs that were robustly expressed, of which 191 were significantly differentially expressed (according to false discovery rate) between lesioned and preserved OA cartilage. Upon integrating mRNA sequencing data, we showed that intergenic and antisense differentially expressed lncRNAs demonstrate high, positive correlations with their respective flanking sense genes. To functionally validate this observation, we selected P3H2-AS1, which was down-regulated in primary chondrocytes, resulting in the down-regulation of P3H2 gene expression levels. As such, we can confirm that P3H2-AS1 regulates its sense gene P3H2. CONCLUSION: By applying an improved detection strategy, robustly differentially expressed lncRNAs in OA cartilage were detected. Integration of these lncRNAs with differential mRNA expression levels in the same samples provided insight into their regulatory networks. Our data indicates that intergenic and antisense lncRNAs play an important role in regulating the pathophysiology of OA.


Assuntos
Cartilagem Articular/metabolismo , Epigênese Genética , Osteoartrite do Quadril/metabolismo , Osteoartrite do Joelho/metabolismo , RNA Longo não Codificante/metabolismo , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite do Quadril/genética , Osteoartrite do Quadril/patologia , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , RNA Longo não Codificante/genética
10.
FASEB J ; 34(4): 5525-5537, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141137

RESUMO

Skeletal muscles control posture, mobility and strength, and influence whole-body metabolism. Muscles are built of different types of myofibers, each having specific metabolic, molecular, and contractile properties. Fiber classification is, therefore, regarded the key for understanding muscle biology, (patho-) physiology. The expression of three myosin heavy chain (MyHC) isoforms, MyHC-1, MyHC-2A, and MyHC-2X, marks myofibers in humans. Typically, myofiber classification is performed by an eye-based histological analysis. This classical approach is insufficient to capture complex fiber classes, expressing more than one MyHC-isoform. We, therefore, developed a methodological procedure for high-throughput characterization of myofibers on the basis of multiple isoforms. The mean fluorescence intensity of the three most abundant MyHC isoforms was measured per myofiber in muscle biopsies of 56 healthy elderly adults, and myofiber classes were identified using computational biology tools. Unsupervised clustering revealed the existence of six distinct myofiber clusters. A comparison with the visual assessment of myofibers using the same images showed that some of these myofiber clusters could not be detected or were frequently misclassified. The presence of these six clusters was reinforced by RNA expressions levels of sarcomeric genes. In addition, one of the clusters, expressing all three MyHC isoforms, correlated with histological measures of muscle health. To conclude, this methodological procedure enables deep characterization of the complex muscle heterogeneity. This study opens opportunities to further investigate myofiber composition in comparative studies.


Assuntos
Biologia Computacional/métodos , Fibras Musculares Esqueléticas/classificação , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/citologia , Cadeias Pesadas de Miosina/metabolismo , Feminino , Humanos , Masculino , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo
11.
Arthritis Rheumatol ; 71(4): 561-570, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30298554

RESUMO

OBJECTIVE: Multiple single-nucleotide polymorphisms (SNPs) conferring susceptibility to osteoarthritis (OA) mark imbalanced expression of positional genes in articular cartilage, reflected by unequally expressed alleles among heterozygotes (allelic imbalance [AI]). We undertook this study to explore the articular cartilage transcriptome from OA patients for AI events to identify putative disease-driving genetic variation. METHODS: AI was assessed in 42 preserved and 5 lesioned OA cartilage samples (from the Research Arthritis and Articular Cartilage study) for which RNA sequencing data were available. The count fraction of the alternative alleles among the alternative and reference alleles together (φ) was determined for heterozygous individuals. A meta-analysis was performed to generate a meta-φ and P value for each SNP with a false discovery rate (FDR) correction for multiple comparisons. To further validate AI events, we explored them as a function of multiple additional OA features. RESULTS: We observed a total of 2,070 SNPs that consistently marked AI of 1,031 unique genes in articular cartilage. Of these genes, 49 were found to be significantly differentially expressed (fold change <0.5 or >2, FDR <0.05) between preserved and paired lesioned cartilage, and 18 had previously been reported to confer susceptibility to OA and/or related phenotypes. Moreover, we identified notable highly significant AI SNPs in the CRLF1, WWP2, and RPS3 genes that were related to multiple OA features. CONCLUSION: We present a framework and resulting data set for researchers in the OA research field to probe for disease-relevant genetic variation that affects gene expression in pivotal disease-affected tissue. This likely includes putative novel compelling OA risk genes such as CRLF1, WWP2, and RPS3.


Assuntos
Desequilíbrio Alélico/genética , Cartilagem Articular/metabolismo , Osteoartrite/genética , Polimorfismo de Nucleotídeo Único , Transcriptoma/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Receptores de Citocinas/genética , Proteínas Ribossômicas/genética , Fatores de Risco , Análise de Sequência de RNA , Ubiquitina-Proteína Ligases/genética
12.
Ann Rheum Dis ; 78(2): 270-277, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30504444

RESUMO

OBJECTIVE: To uncover the microRNA (miRNA) interactome of the osteoarthritis (OA) pathophysiological process in the cartilage. METHODS: We performed RNA sequencing in 130 samples (n=35 and n=30 pairs for messenger RNA (mRNA) and miRNA, respectively) on macroscopically preserved and lesioned OA cartilage from the same patient and performed differential expression (DE) analysis of miRNA and mRNAs. To build an OA-specific miRNA interactome, a prioritisation scheme was applied based on inverse Pearson's correlations and inverse DE of miRNAs and mRNAs. Subsequently, these were filtered by those present in predicted (TargetScan/microT-CDS) and/or experimentally validated (miRTarBase/TarBase) public databases. Pathway enrichment analysis was applied to elucidate OA-related pathways likely mediated by miRNA regulatory mechanisms. RESULTS: We found 142 miRNAs and 2387 mRNAs to be differentially expressed between lesioned and preserved OA articular cartilage. After applying prioritisation towards likely miRNA-mRNA targets, a regulatory network of 62 miRNAs targeting 238 mRNAs was created. Subsequent pathway enrichment analysis of these mRNAs (or genes) elucidated that genes within the 'nervous system development' are likely mediated by miRNA regulatory mechanisms (familywise error=8.4×10-5). Herein NTF3 encodes neurotrophin-3, which controls survival and differentiation of neurons and which is closely related to the nerve growth factor. CONCLUSIONS: By an integrated approach of miRNA and mRNA sequencing data of OA cartilage, an OA miRNA interactome and related pathways were elucidated. Our functional data demonstrated interacting levels at which miRNA affects expression of genes in the cartilage and exemplified the complexity of functionally validating a network of genes that may be targeted by multiple miRNAs.


Assuntos
Cartilagem Articular/química , Biologia Computacional/métodos , MicroRNAs/análise , Osteoartrite/genética , RNA Mensageiro/análise , Humanos , Análise de Sequência de RNA
13.
Nat Genet ; 49(1): 131-138, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27918535

RESUMO

Most disease-associated genetic variants are noncoding, making it challenging to design experiments to understand their functional consequences. Identification of expression quantitative trait loci (eQTLs) has been a powerful approach to infer the downstream effects of disease-associated variants, but most of these variants remain unexplained. The analysis of DNA methylation, a key component of the epigenome, offers highly complementary data on the regulatory potential of genomic regions. Here we show that disease-associated variants have widespread effects on DNA methylation in trans that likely reflect differential occupancy of trans binding sites by cis-regulated transcription factors. Using multiple omics data sets from 3,841 Dutch individuals, we identified 1,907 established trait-associated SNPs that affect the methylation levels of 10,141 different CpG sites in trans (false discovery rate (FDR) < 0.05). These included SNPs that affect both the expression of a nearby transcription factor (such as NFKB1, CTCF and NKX2-3) and methylation of its respective binding site across the genome. Trans methylation QTLs effectively expose the downstream effects of disease-associated variants.


Assuntos
Metilação de DNA , Doença/genética , Regulação da Expressão Gênica , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas , Fatores de Transcrição/metabolismo , Sítios de Ligação , Estudos de Coortes , Feminino , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo
14.
PLoS One ; 11(5): e0154999, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27163789

RESUMO

OBJECTIVE: To identify intrinsic differences in cartilage gene expression profiles between wild-type- and Dio2-/--mice, as a mechanism to investigate factors that contribute to prolonged healthy tissue homeostasis. METHODS: Previously generated microarray-data (Illumina MouseWG-6 v2) of knee cartilage of wild-type and Dio2 -/- -mice were re-analyzed to identify differential expressed genes independent of mechanical loading conditions by forced treadmill-running. RT-qPCR and western blot analyses of overexpression and knockdown of Calr in mouse chondro-progenitor cells (ATDC5) were applied to assess the direct effect of differential Calr expression on cartilage deposition. RESULTS: Differential expression analyses of articular cartilage of Dio2-/- (N = 9) and wild-type-mice (N = 11) while applying a cutoff threshold (P < 0.05 (FDR) and FC > |1,5|) resulted in 1 probe located in Calreticulin (Calr) that was found significantly downregulated in Dio2-/- mice (FC = -1.731; P = 0.044). Furthermore, overexpression of Calr during early chondrogenesis in ATDC5 cells leads to decreased proteoglycan deposition and corresponding lower Aggrecan expression, whereas knocking down Calr expression does not lead to histological differences of matrix composition. CONCLUSION: We here demonstrate that the beneficial homeostatic state of articular cartilage in Dio2-/- mice is accompanied with significant lower expression of Calr. Functional analyses further showed that upregulation of Calr expression could act as an initiator of cartilage destruction. The consistent association between Calr and Dio2 expression suggests that enhanced expression of these genes facilitate detrimental effects on cartilage integrity.


Assuntos
Calreticulina/genética , Cartilagem Articular/metabolismo , Iodeto Peroxidase/genética , Osteoartrite/genética , Articulação Patelofemoral/metabolismo , Agrecanas/genética , Agrecanas/metabolismo , Animais , Calreticulina/metabolismo , Cartilagem Articular/patologia , Condrócitos/metabolismo , Condrócitos/patologia , Teste de Esforço , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Iodeto Peroxidase/deficiência , Masculino , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Osteoartrite/metabolismo , Osteoartrite/patologia , Articulação Patelofemoral/patologia , Proteoglicanas/genética , Proteoglicanas/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Iodotironina Desiodinase Tipo II
16.
Ann Rheum Dis ; 75(3): 571-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25550340

RESUMO

OBJECTIVE: To further explore deiodinase iodothyronine type 2 (DIO2) as a therapeutic target in osteoarthritis (OA) by studying the effects of forced mechanical loading on in vivo joint cartilage tissue homeostasis and the modulating effect herein of Dio2 deficiency. METHODS: Wild-type and C57BL/6-Dio2(-/-) -mice were subjected to a forced running regime for 1 h per day for 3 weeks. Severity of OA was assessed by histological scoring for cartilage damage and synovitis. Genome-wide gene expression was determined in knee cartilage by microarray analysis (Illumina MouseWG-6 v2). STRING-db analyses were applied to determine enrichment for specific pathways and to visualise protein-protein interactions. RESULTS: In total, 158 probes representing 147 unique genes showed significantly differential expression with a fold-change ≥1.5 upon forced exercise. Among these are genes known for their association with OA (eg, Mef2c, Egfr, Ctgf, Prg4 and Ctnnb1), supporting the use of forced running as an OA model in mice. Dio2-deficient mice showed significantly less cartilage damage and signs of synovitis. Gene expression response upon exercise between wild-type and knockout mice was significantly different for 29 genes. CONCLUSIONS: Mice subjected to a running regime have significant increased cartilage damage and synovitis scores. Lack of Dio2 protected against cartilage damage in this model and was reflected in a specific gene expression profile, and either mark a favourable effect in the Dio2 knockout (eg, Gnas) or an unfavourable effect in wild-type cartilage homeostasis (eg, Hmbg2 and Calr). These data further support DIO2 activity as a therapeutic target in OA.


Assuntos
Cartilagem Articular/metabolismo , Iodeto Peroxidase/genética , Articulação do Joelho/metabolismo , Osteoartrite do Joelho/genética , Condicionamento Físico Animal , RNA Mensageiro/metabolismo , Estresse Mecânico , Animais , Cartilagem Articular/patologia , Perfilação da Expressão Gênica , Articulação do Joelho/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Reação em Cadeia da Polimerase em Tempo Real , Iodotironina Desiodinase Tipo II
17.
Arthritis Rheumatol ; 67(8): 2108-16, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25892573

RESUMO

OBJECTIVE: To identify osteoarthritis (OA) progression-modulating pathways in articular cartilage and their respective regulatory epigenetic and genetic determinants in end-stage disease. METHODS: Transcriptional activity of CpG was assessed using gene expression data and DNA methylation data for preserved and lesional articular cartilage samples. Disease-responsive transcriptionally active CpG were identified by means of differential methylation between preserved and lesional cartilage. Transcriptionally relevant genetic determinants were addressed by means of single-nucleotide polymorphisms (SNPs) proximal to the OA-responsive transcriptionally active CpG. Statistical analyses were corrected for age, sex, joint, and technical covariates. A random effect was included to correct for possible correlations between paired samples. RESULTS: Of 9,838 transcribed genes in articular cartilage, 2,324 correlated with the methylation status of 3,748 transcriptionally active CpG; both negative (n = 1,741) and positive (n = 2,007) correlations were observed. Hypomethylation and hypermethylation (false discovery rate of <0.05, |Δß| > 0.05) were observed for 62 and 25 transcriptionally active CpG, respectively, covering 70 unique genes. Enrichment for developmental and extracellular matrix maintenance pathways indicated possible reactivation of endochondral ossification. Finally, we observed 31 and 26 genes for which methylation and expression, respectively, were additionally affected by genetic variation. CONCLUSION: We identified tissue-specific genes involved in OA disease progression, reflected by genetic and pathologic epigenetic regulation of transcription, primarily at genes involved in development. Therefore, transcriptionally active SNPs near these genes may serve as putative susceptibility alleles. Our results constitute an important step toward understanding the reported widespread epigenetic changes occurring in OA articular cartilage and toward subsequent development of treatments targeting disease-driving pathways.


Assuntos
Cartilagem Articular/metabolismo , Epigênese Genética/genética , Osteoartrite/genética , Ilhas de CpG , Metilação de DNA , Feminino , Humanos , Masculino , Polimorfismo de Nucleotídeo Único , Transcriptoma
18.
Ann Rheum Dis ; 74(8): 1571-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24695009

RESUMO

OBJECTIVES: To investigate how the genetic susceptibility gene DIO2 confers risk to osteoarthritis (OA) onset in humans and to explore whether counteracting the deleterious effect could contribute to novel therapeutic approaches. METHODS: Epigenetically regulated expression of DIO2 was explored by assessing methylation of positional CpG-dinucleotides and the respective DIO2 expression in OA-affected and macroscopically preserved articular cartilage from end-stage OA patients. In a human in vitro chondrogenesis model, we measured the effects when thyroid signalling during culturing was either enhanced (excess T3 or lentiviral induced DIO2 overexpression) or decreased (iopanoic acid). RESULTS: OA-related changes in methylation at a specific CpG dinucleotide upstream of DIO2 caused significant upregulation of its expression (ß=4.96; p=0.0016). This effect was enhanced and appeared driven specifically by DIO2 rs225014 risk allele carriers (ß=5.58, p=0.0006). During in vitro chondrogenesis, DIO2 overexpression resulted in a significant reduced capacity of chondrocytes to deposit extracellular matrix (ECM) components, concurrent with significant induction of ECM degrading enzymes (ADAMTS5, MMP13) and markers of mineralisation (ALPL, COL1A1). Given their concurrent and significant upregulation of expression, this process is likely mediated via HIF-2α/RUNX2 signalling. In contrast, we showed that inhibiting deiodinases during in vitro chondrogenesis contributed to prolonged cartilage homeostasis as reflected by significant increased deposition of ECM components and attenuated upregulation of matrix degrading enzymes. CONCLUSIONS: Our findings show how genetic variation at DIO2 could confer risk to OA and raised the possibility that counteracting thyroid signalling may be a novel therapeutic approach.


Assuntos
Predisposição Genética para Doença/genética , Iodeto Peroxidase/genética , Osteoartrite/genética , Cartilagem Articular/enzimologia , Cartilagem Articular/fisiopatologia , Condrogênese/genética , Metilação de DNA , Epigênese Genética , Regulação da Expressão Gênica , Inativação Gênica/fisiologia , Humanos , Perda de Heterozigosidade , Osteoartrite/fisiopatologia , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Hormônios Tireóideos/fisiologia , Regulação para Cima/fisiologia , Iodotironina Desiodinase Tipo II
19.
PLoS One ; 9(7): e103056, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25054223

RESUMO

OBJECTIVE: Identify gene expression profiles associated with OA processes in articular cartilage and determine pathways changing during the disease process. METHODS: Genome wide gene expression was determined in paired samples of OA affected and preserved cartilage of the same joint using microarray analysis for 33 patients of the RAAK study. Results were replicated in independent samples by RT-qPCR and immunohistochemistry. Profiles were analyzed with the online analysis tools DAVID and STRING to identify enrichment for specific pathways and protein-protein interactions. RESULTS: Among the 1717 genes that were significantly differently expressed between OA affected and preserved cartilage we found significant enrichment for genes involved in skeletal development (e.g. TNFRSF11B and FRZB). Also several inflammatory genes such as CD55, PTGES and TNFAIP6, previously identified in within-joint analyses as well as in analyses comparing preserved cartilage from OA affected joints versus healthy cartilage were among the top genes. Of note was the high up-regulation of NGF in OA cartilage. RT-qPCR confirmed differential expression for 18 out of 19 genes with expression changes of 2-fold or higher, and immunohistochemistry of selected genes showed a concordant change in protein expression. Most of these changes associated with OA severity (Mankin score) but were independent of joint-site or sex. CONCLUSION: We provide further insights into the ongoing OA pathophysiological processes in cartilage, in particular into differences in macroscopically intact cartilage compared to OA affected cartilage, which seem relatively consistent and independent of sex or joint. We advocate that development of treatment could benefit by focusing on these similarities in gene expression changes and/or pathways.


Assuntos
Cartilagem Articular/patologia , Osteoartrite/genética , Osteoartrite/patologia , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/metabolismo , Estudos de Coortes , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Osteoartrite/metabolismo , Mapas de Interação de Proteínas
20.
Ann Rheum Dis ; 73(10): 1844-53, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23864235

RESUMO

OBJECTIVE: To identify novel gene expression networks in blood of osteoarthritis patients compared to controls. METHODS: A comprehensive exploration of gene expression in peripheral blood was performed by microarray analysis for a subset of osteoarthritis patients from the Genetics osteoARthritis and Progression (GARP) study in comparison with sex and age-matched healthy controls. To identify pathways, we performed gene enrichment analyses (database for annotation, visualisation and integrated discovery and search tool for the retrieval of interacting genes). Quantitative PCR analysis in overlapping and in additional osteoarthritis samples was performed for prioritised genes to validate and replicate findings. Classification of cases and controls was explored by applying statistical models. RESULTS: 741 probes representing 694 unique genes were differentially expressed between cases and controls, including 86 genes expressed with at least a 1.5-fold difference. ATF4, GPR18 and H3F3B were among the top genes identified (p<4.5 × 10(-8)). We found that in the blood of osteoarthritis patients the apoptosis pathway, including the well-known gene CASP3, was significantly enriched among the differentially expressed genes. Our findings were validated in independent samples and when using a small subset of the validated genes, we could accurately distinguish patients from controls (area under the curve 98%). CONCLUSIONS: In the current study, we have identified specific gene expression networks, in the easily accessible tissue blood, which associated consistently with osteoarthritis among GARP study cases. Our data further hint at the relevance of apoptosis as an aetiological factor in osteoarthritis onset, thereby qualifying expression profiling of blood as a useful tool to understand the underlying molecular mechanisms of osteoarthritis.


Assuntos
Apoptose/genética , Regulação da Expressão Gênica , Osteoartrite/genética , Adulto , Idoso , Proteínas Sanguíneas/genética , Estudos de Casos e Controles , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Osteoartrite/sangue , Osteoartrite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...