Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 96(2-1): 022221, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28950556

RESUMO

A lossless nonlinear LC transmission network is considered. With the use of the reductive perturbation method in the semidiscrete limit, we show that the dynamics of matter-wave solitons in the network can be modeled by a one-dimensional Gross-Pitaevskii (GP) equation with a time-dependent linear potential in the presence of a chemical potential. An explicit expression for the growth rate of a purely growing modulational instability (MI) is presented and analyzed. We find that the potential parameter of the GP equation of the system does not affect the different regions of the MI. Neglecting the chemical potential in the GP equation, we derive exact analytical solutions which describe the propagation of both bright and dark solitary waves on continuous-wave (cw) backgrounds. Using the found exact analytical solutions of the GP equation, we investigate numerically the transmission of both bright and dark solitary voltage signals in the network. Our numerical studies show that the amplitude of a bright solitary voltage signal and the depth of a dark solitary voltage signal as well as their width, their motion, and their behavior depend on (i) the propagation frequencies, (ii) the potential parameter, and (iii) the amplitude of the cw background. The GP equation derived in this paper with a time-dependent linear potential opens up different ideas that may be of considerable theoretical interest for the management of matter-wave solitons in nonlinear LC transmission networks.

2.
Artigo em Inglês | MEDLINE | ID: mdl-26172780

RESUMO

We study analytically the dynamics of modulated waves in a dissipative modified Noguchi nonlinear electrical network. In the continuum limit, we use the reductive perturbation method in the semidiscrete limit to establish that the propagation of modulated waves in the network is governed by a dissipative nonlinear Schrödinger (NLS) equation. Motivated with a solitary wave type of solution to the NLS equation, we use both the direct method and the Weierstrass's elliptic function method to present classes of bright, kink, and dark solitary wavelike solutions to the dissipative NLS equation of the network. Through the exact solitary wavelike solutions to the dissipative NLS equation, we investigate the effects of the dissipative elements of the network on wave propagation. We show that the wave amplitude decreases and its width increases when the dissipative element of the network increases. It has been also found that the dissipative element of the network can be used to manipulate the motion of solitary waves through the network. This work presents a good analytical approach of investigating the propagation of solitary waves through discrete electrical transmission lines and is very important for studying modulational instability.

3.
Artigo em Inglês | MEDLINE | ID: mdl-25871172

RESUMO

We consider a lossless one-dimensional nonlinear discrete bi-inductance electrical transmission line made of N identical unit cells. When lattice effects are considered, we use the reductive perturbation method in the semidiscrete limit to show that the dynamics of modulated waves can be modeled by the classical nonlinear Schrödinger (CNLS) equation, which describes the modulational instability and the propagation of bright and dark solitons on a continuous-wave background. Our theoretical analysis based on the CNLS equation predicts either two or four frequency regions with different behavior concerning the modulational instability of a plane wave. With the help of the analytical solutions of the CNLS equation, we investigate analytically the effects of the linear capacitance CS on the dynamics of matter-wave solitons in the network. Our results reveal that the linear parameter CS can be used to manipulate the motion of bright, dark, and kink soliton in the network.

4.
Artigo em Inglês | MEDLINE | ID: mdl-23496598

RESUMO

Motivated by recent proposals of "collisionally inhomogeneous" Bose-Einstein condensates (BECs), which have a spatially modulated scattering length, we introduce a phase imprint into the macroscopic order parameter governing the dynamics of BECs with spatiotemporal varying scattering length described by a cubic Gross-Pitaevskii (GP) equation and then suitably engineer the imprinted phase to generate the modified GP equation, also called the cubic derivative nonlinear Schrödinger (NLS) equation. This equation describes the dynamics of condensates with two-body (attractive and repulsive) interactions in a time-varying quadratic external potential. We then carry out a theoretical analysis which invokes a lens-type transformation that converts the cubic derivative NLS equation into a modified NLS equation with only explicit temporal dependence. Our analysis suggests a particular interest in a specific time-varying potential with the strength of the magnetic trap ~1/(t+t(*))(2). For a time-varying quadratic external potential of this kind, an explicit expression for the growth rate of a purely growing modulational instability is presented and analyzed. We point out the effect of the imprint parameter and the parameter t(*) on the instability growth rate, as well as on the solitary waves of the BECs.


Assuntos
Partículas Elementares , Modelos Estatísticos , Dinâmica não Linear , Teoria Quântica , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...