Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Phytoremediation ; 21(9): 840-848, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30834773

RESUMO

In the present study, three aquatic macrophytes, Eichhornia crassipes, Salvinia molesta, and Pistia stratiotes were used to assess their relative efficacies in decontamination of a fish culture pond, regularly fed with coal mine effluent (CME). The level of metals like Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd were much higher in CME-fed pond water than their recommended limits in drinking water set by the Bureau of Indian standards and in effluents by the Environmental Protection Agency. The levels of metal were lowered substantially in CME-fed pond water after exposure of the above plants to such water, however, metal levels in the plants increased tremendously. The increased metal levels in plants severely damaged their physiological and biochemical processes. The contents of chlorophyll a, b and carotenoid were reduced by 63.2, 64.2, and 46.3%, respectively, in E. crassipes, 41, 57.4, and 57.8% in S. molesta, and 42, 62, and 61% in P. stratiotes. The accumulating metals also generated oxidative stress in plants, as evident from the increased superoxide dismutase and catalase activities and enhanced malondialdehyde content. The E. crassipes was the most potent in absorbing the metals from the CME-fed pond water, followed by S. molesta and P. stratiotes.


Assuntos
Metais Pesados , Poluentes Químicos da Água/análise , Animais , Biodegradação Ambiental , Clorofila A , Carvão Mineral , Descontaminação , Lagoas
2.
Environ Monit Assess ; 191(3): 136, 2019 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-30734121

RESUMO

Coal mining generates huge quantity of toxic effluent which consistently pollutes the neighboring wetlands where the local inhabitants regularly cultivate edible fishes. In the present study the concentration of heavy metals Fe, Zn, Cu, Mn, Ni, Cd, Pb and Cr were analyzed in the water and various tissues of edible catfish Clarias batrachus reared in a pond receiving effluents from Rajrappa coal mine, Jharkhand, India. The metal concentrations in the pond water were dramatically higher (Fe 350%, Zn 423%, Cu 12%, Mn 7029%, Ni 713%, Cd 1700%, Pb 4333% and Cr 588%) than the safe limit of Environmental Pollution Agency (2003) as well as the control tap water. Excessive amounts of metals in effluent caused their substantial transfer to the different tissues of the catfish reared in such ponds. Results showed that accumulation of metals in fish tissues were in the following order: liver > kidney > air breathing organ (ABO) > gills > skin > brain > muscles. Among the various tissues the highest accumulation of most of the metals was recorded in the liver (2.05-271.28 mg/kg dry weight) and lowest in the muscles (1.39-30.27 mg/kg dry weight), while the concentration of metals in other tissues ranged in between. The accumulation of heavy metals in tissues appears to cause remarkable histopathological alterations in skin, gills, ABO, liver and kidney that might be leading to deleterious effect on fish physiology and consequently impact the consumers of such fishes.


Assuntos
Peixes-Gato/fisiologia , Minas de Carvão , Monitoramento Ambiental , Poluentes Químicos da Água/metabolismo , Animais , Peixes-Gato/metabolismo , Carvão Mineral , Água Doce , Brânquias/química , Índia , Metais Pesados/análise , Lagoas , Poluentes Químicos da Água/análise
3.
Int J Phytoremediation ; 19(6): 530-536, 2017 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936868

RESUMO

Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L-1) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.


Assuntos
Araceae/metabolismo , Recuperação e Remediação Ambiental/métodos , Metais Pesados/metabolismo , Traqueófitas/metabolismo , Poluentes Químicos da Água/metabolismo , Poluição Química da Água/prevenção & controle , Biodegradação Ambiental , Carvão Mineral , Descontaminação/métodos , Índia , Mineração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...