Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(42): 39315-39328, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37901498

RESUMO

Zinc oxide nanoparticles (ZnO-NPs) were biosynthesized by using the pericarp aqueous extract from Terminalia catappa Linn. These NPs were characterized using various analytical techniques such as X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, ultraviolet (UV) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM), and XRD studies of the nanoparticles reported mean size as 12.58 nm nanocrystals with highest purity. Further SEM analysis emphasized the nanoparticles to be spherical in shape. The functional groups responsible for capping and stabilizing the NPs were identified with FTIR studies. DLS studies of the synthesized NPs reported ζ potential as -10.1 mV and exhibited stable colloidal solution. These characterized ZnO-NPs were evaluated for various biological applications such as antibacterial, antifungal, antioxidant, genotoxic, biocompatibility, and larvicidal studies. To explore its multidimensional application in the field of medicine. NPs reported a potential antimicrobial activity at a concentration of 200 µg/mL against bacterial strains in the decreasing order of Streptococcus pyogenes > Streptococcus aureus > Streptococcus typhi > Streptococcus aeruginosa and against the fungi Candida albicans. In vitro studies of RBC hemolysis with varying concentrations of NPs confirm their biocompatibility with IC50 value of 211.4 µg/mL. The synthesized NPs' DPPH free radical scavenging activity was examined to extend their antioxidant applications. The antiproliferation and genetic toxicity were studied with meristematic cells of Allium cepa reported with mitotic index (MI index) of 1.2% at the concentration of 1000 µg/mL. NPs exhibited excellent Larvicidal activity against Culex quinquefasciatus larvae with the highest mortality rate as 98% at 4 mg/L. Our findings elicit the therapeutic potentials of the synthesized zinc oxide NPs.

2.
Molecules ; 28(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175197

RESUMO

Stilbenes are polyphenolic allelochemicals synthesized by plants, especially grapes, peanuts, rhubarb, berries, etc., to defend themselves under stressful conditions. They are now exploited in medicine for their antioxidant, anti-proliferative and anti-inflammatory properties. Inflammation is the immune system's response to invading bacteria, toxic chemicals or even nutrient-deprived conditions. It is characterized by the release of cytokines which can wreak havoc on healthy tissues, worsening the disease condition. Stilbenes modulate NF-κB, MAPK and JAK/STAT pathways, and reduce the transcription of inflammatory factors which result in maintenance of homeostatic conditions. Resveratrol, the most studied stilbene, lowers the Michaelis constant of SIRT1, and occupies the substrate binding pocket. Gigantol interferes with the complement system. Besides these, oxyresveratrol, pterostilbene, polydatin, viniferins, etc., are front runners as drug candidates due to their diverse effects from different functional groups that affect bioavailability and molecular interactions. However, they each have different thresholds for toxicity to various cells of the human body, and thus a careful review of their properties must be conducted. In animal models of autoinflammatory diseases, the mode of application of stilbenes is important to their absorption and curative effects, as seen with topical and microemulsion gel methods. This review covers the diversity seen among stilbenes in the plant kingdom and their mechanism of action on the different inflammatory pathways. In detail, macrophages' contribution to inflamed conditions in the liver, the cardiac, connective and neural tissues, in the nephrons, intestine, lungs and in myriad other body cells is explored, along with detailed explanation on how stilbenes alleviate the symptoms specific to body site. A section on the bioavailability of stilbenes is included for understanding the limitations of the natural compounds as directly used drugs due to their rapid metabolism. Current delivery mechanisms include sulphonamides, or using specially designed synthetic drugs. It is hoped that further research may be fueled by this comprehensive work that makes a compelling argument for the exploitation of these compounds in medicine.


Assuntos
Estilbenos , Vitis , Animais , Humanos , Vitis/química , Resveratrol/metabolismo , Frutas/metabolismo , Estilbenos/farmacologia , Estilbenos/uso terapêutico , Estilbenos/química , Inflamação/tratamento farmacológico
3.
J Biomol Struct Dyn ; 41(7): 2687-2697, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35147481

RESUMO

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine which plays a crucial role in controlling inflammatory responses. The pathway of Rheumatoid arthritis (RA) leading to TNF-alpha is activated by macrophages and quite often by natural killer cells and lymphocytes. In the inflammatory phase, it is believed to be the main mediator and to be anchored with the progression of different diseases such as ankylosing spondylitis, Crohn's disease, and Rheumatoid arthritis (RA). The major goal of this study is to use in silico docking studies to investigate the anti-inflammatory potential of a bioactive molecule from the medicinal plant Andrographis paniculata. The three-dimensional structures of different phytochemicals of A. paniculata were obtained from PubChem database, and the receptor protein was derived from PDB database. Docking analysis was executed using AutoDock vina, and the binding energies were compared. Bisandrographolide A and Andrographidine C revealed the highest score of -8.6 Kcal/mol, followed by, Neoandrographolide (-8.5 Kcal/mol). ADME and toxicity parameters were evaluated for these high scoring ligands and results showed that Andrographidine C could be a potent drug, whereas Neoandrographolide and Bisandrographolide A can be modified in in vitro and can lead to a promising drug. Further, the top scorer (Andrographidine C) and control drug (Leflunomide) were subjected to 100 ns MD Simulation. The protein complex with Andrographidine C had more stable confirmation with lower RMSD (0.28 nm) and higher binding energy (-133.927 +/- 13.866 kJ/mol). In conclusion, Andrographidine C may be a potent surrogate to the disease-modifying anti-rheumatic drugs (DMARD's) & Non-steroidal anti-inflammatory drugs (NSAID's) that has fewer or minor adverse effects and can aid in RA management.


Assuntos
Andrographis , Artrite Reumatoide , Simulação de Acoplamento Molecular , Fator de Necrose Tumoral alfa/metabolismo , Andrographis paniculata , Andrographis/química , Andrographis/metabolismo , Anti-Inflamatórios/metabolismo , Artrite Reumatoide/tratamento farmacológico , Compostos Fitoquímicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...