Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Pract Thromb Haemost ; 6(2): e12692, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35356666

RESUMO

Background: Iron deficiency anemia (IDA) and heavy menstrual bleeding are prevalent, interrelated issues impacting over 300 million premenopausal women worldwide. IDA is generally associated with increased platelet counts; however, the effects of IDA and its correction on platelet function in premenopausal women remain unknown. Objectives: We sought to determine how IDA and intravenous iron affect platelet count and platelet function in premenopausal women. Methods: Hematologic indices were assessed in a multicenter, retrospective cohort of 231 women repleted with intravenous iron. Pre- and postinfusion blood samples were then obtained from a prospective cohort of 13 women to analyze the effect of intravenous iron on hematologic parameters as well as platelet function with flow cytometry and platelet aggregation assays under physiologic shear. Results: Following iron replacement, anemia improved, and mean platelet counts decreased by 26.5 and 16.0 K/mm3 in the retrospective and prospective cohorts, respectively. Replacement reduced baseline platelet surface P-selectin levels while enhancing platelet secretory responses to agonists, including collagen-related peptide and ADP. Platelet adhesion and aggregation on collagen under physiologic shear also significantly increased following repletion. Conclusion: We find that intravenous iron improves anemia while restoring platelet counts and platelet secretory responses in premenopausal women with iron deficiency. Our results suggest that iron deficiency as well as iron replacement can have a range of effects on platelet production and function. Consequently, platelet reactivity profiles should be further examined in women and other groups with IDA where replacement offers a promising means to improve anemia as well as quality of life.

2.
Res Pract Thromb Haemost ; 4(2): 205-216, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32110750

RESUMO

BACKGROUND: The contact factor XII (FXII) activates upon contact with a variety of charged surfaces. Activated FXII (FXIIa) activates factor XI, which activates factor IX, resulting in thrombin generation, platelet activation, and fibrin formation. In both in vitro and in vivo rabbit models, components of medical devices, including extracorporeal oxygenators, are known to incite fibrin formation in a FXII-dependent manner. Since FXII has no known role in hemostasis and its inhibition is therefore likely a safe antithrombotic approach, we investigated whether FXII inhibition also reduces accumulation of platelets in extracorporeal oxygenators. OBJECTIVES: We aimed to determine the effect of FXII inhibition on platelet deposition in perfused extracorporeal membrane oxygenators in nonhuman primates. METHODS: A potent FXII neutralizing monoclonal antibody, 5C12, was administered intravenously to block contact activation in baboons. Extracorporeal membrane oxygenators were temporarily deployed into chronic arteriovenous access shunts. Radiolabeled platelet deposition in oxygenators was quantified in real time using gamma camera imaging. Biochemical assays were performed to characterize the method of action of 5C12. RESULTS: The anti-FXII monoclonal antibody 5C12 recognized both the alpha and beta forms of human and baboon FXII by binding to the protease-containing domain, and inhibited FXIIa activity. Administration of 5C12 to baboons reduced platelet deposition and fibrin formation in the extracorporeal membrane oxygenators, in both the presence and absence of systemic low-dose unfractionated heparin. The antiplatelet dose of 5C12 did not cause measurable increases in template bleeding times in baboons. CONCLUSIONS: FXII represents a possible therapeutic and safe target for reducing platelet deposition and fibrin formation during medical interventions including extracorporeal membrane oxygenation.

3.
Cell Mol Bioeng ; 11(6): 519-529, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31105798

RESUMO

PURPOSE­: To develop a small volume whole blood analyzer capable of measuring the hematocrit and coagulation kinetics of whole blood. METHODS AND RESULTS­: A co-planar microfluidic chamber designed to facilitate self-driven capillary action across an internal electrical chip was developed and used to measure the electric parameters of whole human blood that had been anticoagulated or allowed to clot. To promote blood clotting, select chip surfaces were coated with a prothrombin time (PT) reagent containing lipidated tissue factor (TF), which activates the extrinsic pathway of coagulation to promote thrombin generation and fibrin formation. Whole human blood was added to the microfluidic device, and voltage changes within the platform were measured and interpreted using basic resistor-capacitor (RC) circuit and fluid dynamics theory. Upon wetting of the sensing zone, a circuit between two co-planar electrodes within the sensing zone was closed to generate a rapid voltage drop from baseline. The voltage then rose due to sedimentation of red blood cells (RBC) in the sensing zone. For anticoagulated blood samples, the time for the voltage to return to baseline was dependent on hematocrit. In the presence of coagulation, the initiation of fibrin formation in the presence of the PT reagent prevented the return of voltage to baseline due to the reduced packing of RBCs in the sensing zone. CONCLUSIONS­: The technology presented in this study has potential for monitoring the hematocrit and coagulation parameters of patient samples using a small volume of whole blood, suggesting it may hold clinical utility as a point-of-care test.

4.
Cell Mol Bioeng ; 10(1): 16-29, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28580033

RESUMO

The reaction dynamics of a complex mixture of cells and proteins, such as blood, in branched circulatory networks within the human microvasculature or extravascular therapeutic devices such as extracorporeal oxygenation machine (ECMO) remains ill-defined. In this report we utilize a multi-bypass microfluidics ladder network design with dimensions mimicking venules to study patterns of blood platelet aggregation and fibrin formation under complex shear. Complex blood fluid dynamics within multi-bypass networks under flow were modeled using COMSOL. Red blood cells and platelets were assumed to be non-interacting spherical particles transported by the bulk fluid flow, and convection of the activated coagulation factor II, thrombin, was assumed to be governed by mass transfer. This model served as the basis for predicting formation of local shear rate gradients, stagnation points and recirculation zones as dictated by the bypass geometry. Based on the insights from these models, we were able to predict the patterns of blood clot formation at specific locations in the device. Our experimental data was then used to adjust the model to account for the dynamical presence of thrombus formation in the biorheology of blood flow. The model predictions were then compared to results from experiments using recalcified whole human blood. Microfluidic devices were coated with the extracellular matrix protein, fibrillar collagen, and the initiator of the extrinsic pathway of coagulation, tissue factor. Blood was perfused through the devices at a flow rate of 2 µL/min, translating to physiologically relevant initial shear rates of 300 and 700 s-1 for main channels and bypasses, respectively. Using fluorescent and light microscopy, we observed distinct flow and thrombus formation patterns near channel intersections at bypass points, within recirculation zones and at stagnation points. Findings from this proof-of-principle ladder network model suggest a specific correlation between microvascular geometry and thrombus formation dynamics under shear. This model holds potential for use as an integrative approach to identify regions susceptible to intravascular thrombus formation within the microvasculature as well as extravascular devices such as ECMO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...