Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Field Crops Res ; 201: 146-161, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28163361

RESUMO

Chickpea, the second most important legume crop, suffers major yield losses by terminal drought stress (DS). Stronger root system is known to enhance drought yields but this understanding remains controversial. To understand precisely the root traits contribution towards yield, 12 chickpea genotypes with well-known drought response were field evaluated under drought and optimal irrigation. Root traits, such as root length density (RLD), total root dry weight (RDW), deep root dry weight (deep RDW) and root:shoot ratio (RSR), were measured periodically by soil coring up to 1.2 m soil depth across drought treatments. Large variations were observed for RLD, RDW, deep RDW and RSR in both the drought treatments. DS increased RLD below 30 cm soil depth, deep RDW, RSR but decreased the root diameter. DS increased the genetic variation in RDW more at the penultimate soil depths. Genetic variation under drought was the widest for RLD ∼50 DAS, for deep RDW ∼50-75 DAS and for RSR at 35 DAS. Genotypes ICC 4958, ICC 8261, Annigeri, ICC 14799, ICC 283 and ICC 867 at vegetative stage and genotypes ICC 14778, ICCV 10, ICC 3325, ICC 14799 and ICC 1882 at the reproductive phase produced greater RLD. Path- and correlation coefficients revealed strong positive contributions of RLD after 45 DAS, deep RDW at vicinity of maturity and RSR at early podfill stages to yield under drought. Breeding for the best combination of profuse RLD at surface soil depths, and RDW at deeper soil layers, was proposed to be the best selection strategy, for an efficient water use and an enhanced terminal drought tolerance in chickpea.

2.
Field Crops Res ; 197: 10-27, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27698531

RESUMO

Chickpea is the second most important legume crop largely grown under semi-arid tropics where terminal drought is one of the major constraints for its productivity. A trait-based selection had been considered more beneficial in drought tolerance breeding to overcome the environmental influence on drought yields. Large number of traits had been suggested in literature, with less indication on their importance and priority, for use in such breeding programs resulting in poor utilization of critical traits in drought tolerance breeding. To identify the most critical traits that contribute to grain yield under drought, 12 chickpea genotypes, with well-defined drought response, were field evaluated by sampling at regular intervals during the cropping period. Large range of variation was observed for shoot biomass productivity, specific leaf area (SLA) and leaf area index (LAI) at different days after sowings (DAS), canopy temperature depression (CTD) at mid-reproductive stages, growth duration and both morphological and analytical yield components. Grain yield under drought was closely associated with the rate of partitioning (p), crop growth rate (C), CTD, phenology, LAI at mid-pod fill stage, pod number m-2 at maturity, shoot biomass at reproductive growth stages and SLA at physiological maturity. The shoot trait(s) were prioritized based on their significance and contribution to drought tolerance. The trait(s) that conferred tolerance varied across genotypes. The order of traits/plant functions identified as important and critical for the drought tolerance were p, C, CTD, growth duration and other related traits. Relatively less important traits were LAI, SLA at the mid reproductive stage and pod number per unit area at maturity. The traits Dr, seeds pod-1 and 100-seed weight were found to be least important. Breeding for the best combination of p and C with the right phenology was proposed to be the best selection strategy to enhance terminal drought tolerance in chickpea.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...