Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38920442

RESUMO

Link prediction plays a crucial role in identifying future connections within complex networks, facilitating the analysis of network evolution across various domains such as biological networks, social networks, recommender systems, and more. Researchers have proposed various centrality measures, such as degree, clustering coefficient, betweenness, and closeness centralities, to compute similarity scores for predicting links in these networks. These centrality measures leverage both the local and global information of nodes within the network. In this study, we present a novel approach to link prediction using similarity score by utilizing average centrality measures based on local and global centralities, namely Similarity based on Average Degree (SACD), Similarity based on Average Betweenness (SACB), Similarity based on Average Closeness (SACC), and Similarity based on Average Clustering Coefficient (SACCC). Our approach involved determining centrality scores for each node, calculating the average centrality for the entire graph, and deriving similarity scores through common neighbors. We then applied centrality scores to these common neighbors and identified nodes with above average centrality. To evaluate our approach, we compared proposed measures with existing local similarity-based link prediction measures, including common neighbors, the Jaccard coefficient, Adamic-Adar, resource allocation, preferential attachment, as well as recent measures like common neighbor and the Centrality-based Parameterized Algorithm (CCPA), and keyword network link prediction (KNLP). We conducted experiments on four real-world datasets. The proposed similarity scores based on average centralities demonstrate significant improvements. We observed an average enhancement of 24% in terms of Area Under the Receiver Operating Characteristic (AUROC) compared to existing local similarity measures, and a 31% improvement over recent measures. Furthermore, we witnessed an average improvement of 49% and 51% in the Area Under Precision-Recall (AUPR) compared to existing and recent measures. Our comprehensive experiments highlight the superior performance of the proposed method.

2.
Entropy (Basel) ; 25(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37761659

RESUMO

Matrix factorization is a long-established method employed for analyzing and extracting valuable insight recommendations from complex networks containing user ratings. The execution time and computational resources demanded by these algorithms pose limitations when confronted with large datasets. Community detection algorithms play a crucial role in identifying groups and communities within intricate networks. To overcome the challenge of extensive computing resources with matrix factorization techniques, we present a novel framework that utilizes the inherent community information of the rating network. Our proposed approach, named Community-Based Matrix Factorization (CBMF), has the following steps: (1) Model the rating network as a complex bipartite network. (2) Divide the network into communities. (3) Extract the rating matrices pertaining only to those communities and apply MF on these matrices in parallel. (4) Merge the predicted rating matrices belonging to communities and evaluate the root mean square error (RMSE). In our experimentation, we use basic MF, SVD++, and FANMF for matrix factorization, and the Louvain algorithm is used for community division. The experimental evaluation on six datasets shows that the proposed CBMF enhances the quality of recommendations in each case. In the MovieLens 100K dataset, RMSE has been reduced to 0.21 from 1.26 using SVD++ by dividing the network into 25 communities. A similar reduction in RMSE is observed for the datasets of FilmTrust, Jester, Wikilens, Good Books, and Cell Phone.

3.
Comput Intell Neurosci ; 2022: 9985933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371203

RESUMO

With the rapid development of mobile medical care, medical institutions also have the hidden danger of privacy leakage while sharing personal medical data. Based on the k-anonymity and l-diversity supervised models, it is proposed to use the classified personalized entropy l-diversity privacy protection model to protect user privacy in a fine-grained manner. By distinguishing solid and weak sensitive attribute values, the constraints on sensitive attributes are improved, and the sensitive information is reduced for the leakage probability of vital information to achieve the safety of medical data sharing. This research offers a customized information entropy l-diversity model and performs experiments to tackle the issues that the information entropy l-diversity model does not discriminate between strong and weak sensitive features. Data analysis and experimental results show that this method can minimize execution time while improving data accuracy and service quality, which is more effective than existing solutions. The limits of solid and weak on sensitive qualities are enhanced, sensitive data are reduced, and the chance of crucial data leakage is lowered, all of which contribute to the security of healthcare data exchange. This research offers a customized information entropy l-diversity model and performs experiments to tackle the issues that the information entropy l-diversity model does not discriminate between strong and weak sensitive features. The scope of this research is that this paper enhances data accuracy while minimizing the algorithm's execution time.


Assuntos
Segurança Computacional , Privacidade , Algoritmos , Atenção à Saúde , Aprendizado de Máquina , Rede Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...