Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38705313

RESUMO

Plastic pots used in horticultural nurseries generate substantial waste, causing environmental pollution. This study aimed to develop biodegradable composites from banana pseudo-stem reinforced with agricultural residues like pineapple leaves, taro and water hyacinth as eco-friendly substitutes. The aim of this study is to develop optimised banana biocomposite formulations with suitable reinforcements that balance mechanical durability, biodegradation, and seedling growth promotion properties to serve as viable eco-friendly alternatives to plastic seedling pots. This study was carried out by fabricating banana fibre mats through pulping, drying and hot pressing. Composite sheets were reinforced with 50 % pineapple, taro or water hyacinth fibres. The mechanical properties (tensile, yield strength, elongation, bursting strength), hydrophilicity (contact angle, water absorption), biodegradability (soil burial test), and seedling growth promotion were evaluated through appropriate testing methods. The results show that banana-taro composites exhibited suitable tensile strength (25 MPa), elongation (27 %), water uptake (41 %) and 82 % biodegradation in 60 days. It was observed that biodegradable seedling trays fabricated from banana-taro composite showed 95 % tomato seed germination and a 125 cm plant height increase in 30 days, superior to plastic trays. The finding shows that the study demonstrates the potential of banana-taro biocomposites as alternatives to plastic nursery pots, enabling healthy seedling growth while eliminating plastic waste pollution through biodegradation.


Assuntos
Musa , Plântula , Musa/crescimento & desenvolvimento , Musa/química , Plântula/crescimento & desenvolvimento , Resistência à Tração , Biodegradação Ambiental , Germinação , Água/química
2.
J Food Sci ; 89(1): 494-512, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38126117

RESUMO

The vacuum impregnation (VI) process parameters (vacuum pressure = 20-60 kPa; VI temperature = 35-55°C; concentration of the sucrose solution = 40-60 °Brix; and vacuum process time = 8-24 min) for pineapple rings were optimized based on the moisture content (MC), water loss (WL), solids gain (SG), yellowness index (YI), and total soluble solids (TSS) content of pineapple rings using response surface methodology (RSM). A relationship was developed between the process and response variables using RSM and artificial neural network (ANN) techniques. The effectiveness of VI was evaluated by comparing it with the osmotic dehydration (OD) technique. The optimum condition was found to be 31.782 kPa vacuum pressure, 50.441°C solution temperature, and 60 °Brix sucrose concentration for 20.068 min to attain maximum TSS, YI, SG, and WL, and minimum MC of pineapple rings. The R2 values of RSM models for all variables varied between 0.70 and 0.91, whereas mean square error values varied between 0.76 and 71.58 and for ANN models varied between 0.87-0.93 and 0.53-193.78, respectively. Scanning electron micrographs (SEM) revealed that parenchymal cell rupture was less in VI than in OD. The VI pineapple rings exhibited more pores and high SG, as compared to OD, due to the pressure impregnation. Spectroscopic analysis affirmed that the stretching vibrations of intermolecular and intramolecular interactions were significant in VI as against OD. The VI reduced the drying time by 35% compared to OD, with the highest overall acceptability score and lower microbial load during storage. PRACTICAL APPLICATION: Pineapple is a perishable fruit, which necessitates processing for extended shelf life. This study highlights the potential of the vacuum impregnation process as a promising alternative to conventional preservation methods such as osmotic dehydration for pineapples.


Assuntos
Ananas , Desidratação , Vácuo , Dessecação/métodos , Água/análise , Sacarose
3.
Int J Biol Macromol ; 253(Pt 5): 126888, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709217

RESUMO

Limnocharis flava is a noxious aquatic weed that poses a threat to paddy cultivation. The high cellulose and low lignin contents in this plant make it a potential raw material for papermaking. Against this backdrop, this study was taken up to develop Limnocharis flava (LF) based sheets containing natural fibres from Banana (B), Pineapple (P), and Rice Straw (RS) as reinforcing agents. The influence of carboxymethyl cellulose (CMC) as a binder on the LF-based sheets was also studied. To enhance the mechanical and moisture resistance properties, a chitosan coating was provided to the sheets. Analytical tests for mechanical properties, water barrier properties, functional groups, structure and microstructure, thermal properties and biodegradability were performed. Among the samples, LF + B showed the highest tensile strength (34.86 Mpa) and bursting strength (13.055 kg/cm2), while LF + R had higher puncture and tearing strengths. Chitosan coating was found to enhance the sheets and improve the water barrier properties mechanically. The contact angle of LF + B increased from 91.6° to 110.65°, while the water vapour transmission rate of LF reduced from 532.18 to 404.47 on providing chitosan coating. The significant interactions of reinforcing agents were confirmed by the results of FTIR and that of the coating by the SEM micrographs. The LF-based sheets were also found to have decent thermal stability. The high value of the crystallinity index in LF + R samples supported their remarkable mechanical properties. This study proclaims the notable suitability of Limnocharis flava in manufacturing paper for packaging applications.


Assuntos
Quitosana , Quitosana/química , Madeira , Celulose/química , Lignina , Embalagem de Alimentos , Resistência à Tração
4.
Ultrason Sonochem ; 90: 106166, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36215891

RESUMO

Although both ultraviolet (UV) radiation and ultrasound (US) treatment have their capabilities in microbial inactivation, applying any one method alone may require a high dose for complete inactivation, which may affect the sensory and nutritional properties of pineapple juice. Hence, this study was intended to analyse and optimise the effect of combined US and UV treatments on microbial inactivation without affecting the selected quality parameters of pineapple juice. US treatment (33 kHz) was done at three different time intervals, viz. 10 min, 20 min and 30 min., after which, juice samples were subjected to UV treatment for 10 min at three UV dosage levels, viz. 1 J/cm2, 1.3 J/cm2, and 1.6 J/cm2. The samples were evaluated for total colour difference, pH, total soluble solids (TSS), titrable acidity (TA), and ascorbic acid content; total bacterial count and total yeast count; and the standardization of process parameters was done using Response Surface Methodology and Artificial Neural Network. The results showed that the individual, as well as combined treatments, did not significantly impact the physicochemical properties while retaining the quality characteristics. It was observed that combined treatment resulted in 5 log cycle reduction in bacterial and yeast populations while the individual treatment failed. From the optimization studies, it was found that combined US and UV treatments with 22.95 min and1.577 J/cm2 ensured a microbiologically safe product while retaining organoleptic quality close to that of fresh juice.


Assuntos
Ananas , Malus , Malus/química , Manipulação de Alimentos/métodos , Saccharomyces cerevisiae , Sucos de Frutas e Vegetais , Viabilidade Microbiana/efeitos da radiação , Ananas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...