Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Autism Dev Disord ; 47(3): 549-562, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27853923

RESUMO

Chromosome 15q11q13 is among the least stable regions in the genome due to its highly complex genomic architecture. Low copy repeat elements at 15q13.3 facilitate recurrent copy number variants (CNVs), with deletions established as pathogenic and CHRNA7 implicated as a candidate gene. However, the pathogenicity of duplications of CHRNA7 is unclear, as they are found in affected probands as well as in reportedly healthy parents and unaffected control individuals. We evaluated 18 children with microduplications involving CHRNA7, identified by clinical chromosome microarray analysis (CMA). Comprehensive phenotyping revealed high prevalence of developmental delay/intellectual disability, autism spectrum disorder, and attention deficit/hyperactivity disorder. As CHRNA7 duplications are the most common CNVs identified by clinical CMA, this study provides anticipatory guidance for those involved with care of affected individuals.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Transtorno do Espectro Autista/genética , Variações do Número de Cópias de DNA/genética , Deficiências do Desenvolvimento/genética , Fenótipo , Receptor Nicotínico de Acetilcolina alfa7/genética , Criança , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Análise em Microsséries , Linhagem
3.
Mol Brain ; 9(1): 93, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27903293

RESUMO

ABAT deficiency (OMIM 613163) is a rare inborn error of metabolism caused by recessive variants in the gene 4-aminobutyric acid transaminase (ABAT), which is responsible for both the catalysis of GABA and maintenance of nucleoside pools in the mitochondria. To date, only a few patients have been reported worldwide. Their clinical presentation has been remarkably consistent with primary features of severe psychomotor retardation, encephalopathy, hypotonia, and infantile-onset refractory epilepsy. We report a new case of ABAT deficiency that marks an important departure from previous clinical findings. The patient presented at age 6 months with global developmental delay, hypotonia, hypersomnolence and mild choreiform movements. At age 18 months, the subject's clinical presentation was still milder than all previously reported patients and, most notably, did not include seizures. Clinical whole exome sequencing revealed two heterozygous ABAT missense variants that are rare and predicted damaging, but never before reported in a patient and were reported as variants of unknown significance. To test the potential pathogenicity of the variants identified in this patient we developed a cell-based system to test both functions of the ABAT protein via GABA transaminase enzyme activity and mtDNA copy number assays. This systematic approach was validated using vigabatrin, the irreversible inhibitor of ABAT, and leveraged to test the functionality of all ABAT variants in previously reported patients plus the variants in this new case. This work confirmed the novel variants compromised ABAT function to similar levels as variants in previously characterized cases with more severe clinical presentation, thereby confirming the molecular diagnosis of this patient. Additionally, functional studies conducted in cells from both mild and severe patient fibroblasts showed similar levels of compromise in mitochondrial membrane potential, respiratory capacity, ATP production and mtDNA depletion. These results illustrate how cell-based functional studies can aid in the diagnosis of a rare, neurological disorder. Importantly, this patient marks an expansion in the clinical phenotype for ABAT deficiency to a milder presentation that is more commonly seen in pediatric genetics and neurology clinics.


Assuntos
4-Aminobutirato Transaminase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Medicina de Precisão , 4-Aminobutirato Transaminase/genética , 4-Aminobutirato Transaminase/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/enzimologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Linhagem Celular Tumoral , Criança , Pré-Escolar , DNA Mitocondrial/genética , Metabolismo Energético , Feminino , Dosagem de Genes , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Mitocôndrias/metabolismo
4.
Orphanet J Rare Dis ; 10: 75, 2015 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26070612

RESUMO

BACKGROUND: Genomic disorders resulting from deletion or duplication of genomic segments are known to be an important cause of cardiovascular malformations (CVMs). In our previous study, we identified a unique individual with a de novo 17q25.3 deletion from a study of 714 individuals with CVM. METHODS: To understand the contribution of this locus to cardiac malformations, we reviewed the data on 60,000 samples submitted for array comparative genomic hybridization (CGH) studies to Medical Genetics Laboratories at Baylor College of Medicine, and ascertained seven individuals with segmental aneusomy of 17q25. We validated our findings by studying another individual with a de novo submicroscopic deletion of this region from Cytogenetics Laboratory at Cincinnati Children's Hospital. Using bioinformatic analyses including protein-protein interaction network, human tissue expression patterns, haploinsufficiency scores, and other annotation systems, including a training set of 251 genes known to be linked to human cardiac disease, we constructed a pathogenicity score for cardiac phenotype for each of the 57 genes within the terminal 2.0 Mb of 17q25.3. RESULTS: We found relatively high penetrance of cardiovascular defects (~60 %) with five deletions and three duplications, observed in eight unrelated individuals. Distinct cardiac phenotypes were present in four of these subjects with non-recurrent de novo deletions (range 0.08 Mb-1.4 Mb) in the subtelomeric region of 17q25.3. These included coarctation of the aorta (CoA), total anomalous pulmonary venous return (TAPVR), ventricular septal defect (VSD) and atrial septal defect (ASD). Amongst the three individuals with variable size duplications of this region, one had patent ductus arteriosus (PDA) at 8 months of age. CONCLUSION: The distinct cardiac lesions observed in the affected patients and the bioinformatics analyses suggest that multiple genes may be plausible drivers of the cardiac phenotype within this gene-rich critical interval of 17q25.3.


Assuntos
Cromossomos Humanos Par 17/genética , Cardiopatias Congênitas/genética , Pré-Escolar , Deleção Cromossômica , Variações do Número de Cópias de DNA/genética , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Recém-Nascido , Masculino
5.
Hum Mol Genet ; 18(11): 1909-23, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19279158

RESUMO

Mutations in CHD7, a chromodomain gene, are present in a majority of individuals with CHARGE syndrome, a multiple anomaly disorder characterized by ocular Coloboma, Heart defects, Atresia of the choanae, Retarded growth and development, Genital hypoplasia and Ear anomalies. The clinical features of CHARGE syndrome are highly variable and incompletely penetrant. Olfactory dysfunction is a common feature in CHARGE syndrome and has been potentially linked to primary olfactory bulb defects, but no data confirming this mechanistic link have been reported. On the basis of these observations, we hypothesized that loss of Chd7 disrupts mammalian olfactory tissue development and function. We found severe defects in olfaction in individuals with CHD7 mutations and CHARGE, and loss of odor evoked electro-olfactogram responses in Chd7 deficient mice, suggesting reduced olfaction is due to a dysfunctional olfactory epithelium. Chd7 expression was high in basal olfactory epithelial neural stem cells and down-regulated in mature olfactory sensory neurons. We observed smaller olfactory bulbs, reduced olfactory sensory neurons, and disorganized epithelial ultrastructure in Chd7 mutant mice, despite apparently normal functional cilia and sustentacular cells. Significant reductions in the proliferation of neural stem cells and regeneration of olfactory sensory neurons in the mature Chd7(Gt/+) olfactory epithelium indicate critical roles for Chd7 in regulating neurogenesis. These studies provide evidence that mammalian olfactory dysfunction due to Chd7 haploinsufficiency is linked to primary defects in olfactory neural stem cell proliferation and may influence olfactory bulb development.


Assuntos
Anormalidades Múltiplas/fisiopatologia , Proliferação de Células , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Transtornos do Olfato/fisiopatologia , Células Receptoras Sensoriais/citologia , Células-Tronco/citologia , Anormalidades Múltiplas/genética , Anormalidades Múltiplas/metabolismo , Animais , Criança , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação , Transtornos do Olfato/genética , Transtornos do Olfato/metabolismo , Mucosa Olfatória/citologia , Mucosa Olfatória/crescimento & desenvolvimento , Mucosa Olfatória/metabolismo , Células Receptoras Sensoriais/metabolismo , Olfato , Células-Tronco/metabolismo
6.
J Med Genet ; 46(9): 626-34, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19052029

RESUMO

BACKGROUND: Cornelia de Lange syndrome (CdLS) is a multisystem congenital anomaly disorder. Heterozygous point mutations in three genes (NIPBL, SMC3 and SMC1A), encoding components of the sister chromatid cohesion apparatus, are responsible for approximately 50-60% of CdLS cases. Recent studies have revealed a high degree of genomic rearrangements (for example, deletions and duplications) in the human genome, which result in gene copy number variations (CNVs). CNVs have been associated with a wide range of both Mendelian and complex traits including disease phenotypes such as Charcot-Marie-Tooth type 1A, Pelizaeus-Merzbacher, Parkinson, Alzheimer, autism and schizophrenia. Increased versus decreased copy number of the same gene can potentially cause either similar or different clinical features. METHODS AND RESULTS: This study identified duplications on chromosomes 5 or X using genome wide array comparative genomic hybridisation (aCGH). The duplicated regions contain either the NIPBL or the SMC1A genes. Junction sequences analyses revealed the involvement of three genomic rearrangement mechanisms. The patients share some common features including mental retardation, developmental delay, sleep abnormalities, and craniofacial and limb defects. The systems affected are the same as in CdLS, but clinical manifestations are distinct from CdLS; particularly the absence of the CdLS facial gestalt. CONCLUSIONS: The results confirm the notion that duplication CNV of genes can be a common mechanism for human genetic diseases. Defining the clinical consequences for a specific gene dosage alteration represents a new "reverse genomics" trend in medical genetics that is reciprocal to the traditional approach of delineation of the common clinical phenotype preceding the discovery of the genetic aetiology.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Síndrome de Cornélia de Lange/genética , Dosagem de Genes , Duplicação Gênica , Proteínas/genética , Adolescente , Adulto , Sequência de Bases , Criança , Pré-Escolar , Proteoglicanas de Sulfatos de Condroitina/genética , Hibridização Genômica Comparativa , Feminino , Humanos , Lactente , Masculino , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Troca de Cromátide Irmã
7.
J Med Genet ; 46(3): 168-75, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18812404

RESUMO

BACKGROUND: Wolff-Parkinson-White syndrome (WPW) is a bypass re-entrant tachycardia that results from an abnormal connection between the atria and ventricles. Mutations in PRKAG2 have been described in patients with familial WPW syndrome and hypertrophic cardiomyopathy. Based on the role of bone morphogenetic protein (BMP) signalling in the development of annulus fibrosus in mice, it has been proposed that BMP signalling through the type 1a receptor and other downstream components may play a role in pre-excitation. METHODS AND RESULTS: Using the array comparative genomic hybridisation (CGH), we identified five individuals with non-recurrent deletions of 20p12.3. Four of these individuals had WPW syndrome with variable dysmorphisms and neurocognitive delay. With the exception of one maternally inherited deletion, all occurred de novo, and the smallest of these harboured a single gene, BMP2. In two individuals with additional features of Alagille syndrome, deletion of both JAG1 and BMP2 were identified. Deletion of this region has not been described as a copy number variant in the Database of Genomic Variants and has not been identified in 13 321 individuals from other cohort examined by array CGH in our laboratory. CONCLUSIONS: Our findings demonstrate a novel genomic disorder characterised by deletion of BMP2 with variable cognitive deficits and dysmorphic features and show that individuals bearing microdeletions in 20p12.3 often present with WPW syndrome.


Assuntos
Proteína Morfogenética Óssea 2/genética , Transtornos Cognitivos/genética , Deleção de Sequência , Síndrome de Wolff-Parkinson-White/genética , Adulto , Síndrome de Alagille/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Hibridização Genômica Comparativa , Eletrocardiografia , Fácies , Feminino , Dosagem de Genes , Humanos , Lactente , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteína Jagged-1 , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serrate-Jagged , Síndrome de Wolff-Parkinson-White/patologia
8.
Clin Genet ; 72(5): 411-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17916097

RESUMO

High-resolution array-comparative genome hybridization (CGH) is a powerful tool for detection of submicroscopic chromosome deletions and duplications. We describe two patients with mild mental retardation (MR) and de novo microdeletions of 17q11.2q12. Although the deletions did not involve the neurofibromatosis type 1 (NF1) gene, they overlap with long-range deletions of the NF1 region which have been encountered in a small group of NF1 patients with more severe MR. Given the overlap of the deletions in our two patients with the large-sized NF1 microdeletions but not with the more frequent and smaller NF1 deletions, we hypothesize that more than one gene in the 17q11.2q12 region may be involved in MR. We discuss candidate genes for MR within this interval that was precisely defined through array-CGH analysis.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 17 , Deficiências do Desenvolvimento/genética , Hibridização de Ácido Nucleico , Criança , Pré-Escolar , Análise Citogenética/métodos , Feminino , Humanos , Masculino
9.
Clin Genet ; 72(4): 329-38, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17850629

RESUMO

Monosomy 1p36 is the most common terminal deletion syndrome with an estimated occurrence of 1:5000 live births. Typically, the deletions span <10 Mb of 1pter-1p36.23 and result in mental retardation, developmental delay, sensorineural hearing loss, seizures, cardiomyopathy and cardiovascular malformations, and distinct facies including large anterior fontanel, deep-set eyes, straight eyebrows, flat nasal bridge, asymmetric ears, and pointed chin. We report five patients with 'atypical' proximal interstitial deletions from 1p36.23-1p36.11 using array-comparative genomic hybridization. Four patients carry large overlapping deletions of approximately 9.38-14.69 Mb in size, and one patient carries a small 2.97 Mb deletion. Interestingly, these patients manifest many clinical characteristics that are different from those seen in 'classical' monosomy 1p36 syndrome. The clinical presentation in our patients included: pre- and post-natal growth deficiency (mostly post-natal), feeding difficulties, seizures, developmental delay, cardiovascular malformations, microcephaly, limb anomalies, and dysmorphic features including frontal and parietal bossing, abnormally shaped and posteriorly rotated ears, hypertelorism, arched eyebrows, and prominent and broad nose. Most children also displayed hirsutism. Based on the analysis of the clinical and molecular data from our patients and those reported in the literature, we suggest that this chromosomal abnormality may constitute yet another deletion syndrome distinct from the classical distal 1p36 deletion syndrome.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Par 1 , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Anormalidades Cardiovasculares/genética , Pré-Escolar , Anormalidades Craniofaciais/genética , Deficiências do Desenvolvimento/genética , Fácies , Feminino , Hirsutismo/genética , Humanos , Lactente , Masculino , Síndrome
11.
Am J Hum Genet ; 65(6): 1608-16, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10577914

RESUMO

Structural chromosomal rearrangements occur commonly in the general population. Individuals that carry a balanced translocation are at risk of having unbalanced offspring; therefore, the frequency of translocations in couples with recurrent spontaneous abortions is higher than that in the general population. The constitutional t(11;22) translocation is the most common recurrent non-Robertsonian translocation in humans and may serve as a model to determine the mechanism that causes recurrent meiotic translocations. We previously localized the t(11;22) translocation breakpoint to a region on 22q11 within a low-copy repeat, termed "LCR22." To define the breakpoint on 11q23 and to ascertain whether this region shares homology with LCR22 sequences, we performed haplotype analysis on patients with der(22) syndrome. We found that the breakpoint on 11q23 occurred between two genetic markers, D11S1340 and APOC3-tetra, both being present within a single bacterial-artificial-chromosome clone. To determine whether the breakpoint occurred within the same region among a larger set of carriers, we performed FISH mapping studies. The breakpoints were all within the same clone, suggesting that this region may harbor sequences that are prone to breakage. We narrowed the breakpoint interval, in both derivative chromosomes from two unrelated carriers, to a 190-bp, AT-rich repeat, which indicates that this repeat may mediate recombination events on chromosome 11. Interestingly, the LCR22s harbor AT-rich repeats, suggesting that this sequence motif may mediate recombination events in nonhomologous chromosomes during meiosis.


Assuntos
Quebra Cromossômica/genética , Cromossomos Humanos Par 11/genética , Cromossomos Humanos Par 22/genética , Heterozigoto , Mapeamento Físico do Cromossomo , Translocação Genética/genética , Animais , Sequência de Bases , Clonagem Molecular , Cricetinae , Análise Mutacional de DNA , Feminino , Haplótipos/genética , Humanos , Células Híbridas , Hibridização in Situ Fluorescente , Masculino , Dados de Sequência Molecular , Não Disjunção Genética , Caracteres Sexuais , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA