Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760587

RESUMO

Precision in the diagnosis of diverse central nervous system (CNS) tumor types is crucial for optimal treatment. DNA methylation profiles, which capture the methylation status of thousands of individual CpG sites, are state-of-the-art data-driven means to enhance diagnostic accuracy but are also time consuming and not widely available. Here, to address these limitations, we developed Deep lEarning from histoPathoLOgy and methYlation (DEPLOY), a deep learning model that classifies CNS tumors to ten major categories from histopathology. DEPLOY integrates three distinct components: the first classifies CNS tumors directly from slide images ('direct model'), the second initially generates predictions for DNA methylation beta values, which are subsequently used for tumor classification ('indirect model'), and the third classifies tumor types directly from routinely available patient demographics. First, we find that DEPLOY accurately predicts beta values from histopathology images. Second, using a ten-class model trained on an internal dataset of 1,796 patients, we predict the tumor categories in three independent external test datasets including 2,156 patients, achieving an overall accuracy of 95% and balanced accuracy of 91% on samples that are predicted with high confidence. These results showcase the potential future use of DEPLOY to assist pathologists in diagnosing CNS tumors within a clinically relevant short time frame.

2.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37047360

RESUMO

Hepatocellular carcinoma (HCC), the most common type of liver cancer, has very poor outcomes. Current therapies often have low efficacy and significant toxicities. Thus, there is a critical need for the development of novel therapeutic approaches for HCC. We have developed a novel bioinformatics pipeline, which integrates genome-wide DNA methylation and gene expression data, to identify genes required for the survival of specific molecular cancer subgroups but not normal cells. Targeting these genes may induce cancer-specific "synthetic lethality". Initially, five potential HCC molecular subgroups were identified based on global DNA methylation patterns. Subgroup-2 exhibited the most unique methylation profile and two candidate subtype-specific vulnerability or SL-like genes were identified for this subgroup, including TIAM1, a guanine nucleotide exchange factor encoding gene known to activate Rac1 signalling. siRNA targeting TIAM1 inhibited cell proliferation in TIAM1-positive (subgroup-2) HCC cell lines but had no effect on the normal hepatocyte HHL5 cell line. Furthermore, TIAM1-positive/subgroup-2 cell lines were significantly more sensitive to the TIAM1/RAC1 inhibitor NSC23766 compared with TIAM1-negative HCC lines or the normal HHL5 cell line. The results are consistent with a synthetic lethal role for TIAM1 in a methylation-defined HCC subgroup and suggest it may be a viable therapeutic target in this subset of HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Proliferação de Células/genética , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/genética
3.
Br J Cancer ; 127(11): 2006-2015, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36175618

RESUMO

BACKGROUND: Neuroblastoma is the most common malignancy in infancy, accounting for 15% of childhood cancer deaths. Outcome for the high-risk disease remains poor. DNA-methylation patterns are significantly altered in all cancer types and can be utilised for disease stratification. METHODS: Genome-wide DNA methylation (n = 223), gene expression (n = 130), genetic/clinical data (n = 213), whole-exome sequencing (n = 130) was derived from the TARGET study. Methylation data were derived from HumanMethylation450 BeadChip arrays. t-SNE was used for the segregation of molecular subgroups. A separate validation cohort of 105 cases was studied. RESULTS: Five distinct neuroblastoma molecular subgroups were identified, based on genome-wide DNA-methylation patterns, with unique features in each, including three subgroups associated with known prognostic features and two novel subgroups. As expected, Cluster-4 (infant diagnosis) had significantly better 5-year progression-free survival (PFS) than the four other clusters. However, in addition, the molecular subgrouping identified multiple patient subsets with highly increased risk, most notably infant patients that do not map to Cluster-4 (PFS 50% vs 80% for Cluster-4 infants, P = 0.005), and allowed identification of subgroup-specific methylation differences that may reflect important biological differences within neuroblastoma. CONCLUSIONS: Methylation-based clustering of neuroblastoma reveals novel molecular subgroups, with distinct molecular/clinical characteristics and identifies a subgroup of higher-risk infant patients.


Assuntos
Metilação de DNA , Neuroblastoma , Lactente , Humanos , Neuroblastoma/genética , Prognóstico , Sequenciamento do Exoma , Análise por Conglomerados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...