Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 10508, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714808

RESUMO

In this study, a novel nanobiocomposite consisting of agar (Ag), tragacanth gum (TG), silk fibroin (SF), and MOF-5 was synthesized and extensively investigated by various analytical techniques and basic biological assays for potential biomedical applications. The performed Trypan blue dye exclusion assay indicated that the proliferation percentage of HEK293T cells was 71.19%, while the proliferation of cancer cells (K-562 and MCF-7) was significantly lower, at 10.74% and 3.33%. Furthermore, the Ag-TG hydrogel/SF/MOF-5 nanobiocomposite exhibited significant antimicrobial activity against both E. coli and S. aureus strains, with growth inhibition rates of 76.08% and 69.19% respectively. Additionally, the hemolytic index of fabricated nanobiocomposite was found approximately 19%. These findings suggest that the nanobiocomposite exhibits significant potential for application in cancer therapy and wound healing.


Assuntos
Ágar , Fibroínas , Hidrogéis , Nanocompostos , Tragacanto , Fibroínas/química , Humanos , Hidrogéis/química , Ágar/química , Nanocompostos/química , Tragacanto/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Células HEK293 , Zinco/química , Proliferação de Células/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Testes de Sensibilidade Microbiana , Células MCF-7 , Linhagem Celular Tumoral
2.
Carbohydr Polym ; 334: 122008, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553201

RESUMO

Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.


Assuntos
Cartilagem , Engenharia Tecidual , Cartilagem/metabolismo , Osso e Ossos , Polissacarídeos Bacterianos/metabolismo , Hidrogéis/farmacologia , Hidrogéis/metabolismo
3.
Nanoscale Adv ; 6(2): 337-366, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38235087

RESUMO

Mechanical properties, such as elasticity modulus, tensile strength, elongation, hardness, density, creep, toughness, brittleness, durability, stiffness, creep rupture, corrosion and wear, a low coefficient of thermal expansion, and fatigue limit, are some of the most important features of a biomaterial in tissue engineering applications. Furthermore, the scaffolds used in tissue engineering must exhibit mechanical and biological behaviour close to the target tissue. Thus, a variety of materials has been studied for enhancing the mechanical performance of composites. Carbon-based nanostructures, such as graphene oxide (GO), reduced graphene oxide (rGO), carbon nanotubes (CNTs), fibrous carbon nanostructures, and nanodiamonds (NDs), have shown great potential for this purpose. This is owing to their biocompatibility, high chemical and physical stability, ease of functionalization, and numerous surface functional groups with the capability to form covalent bonds and electrostatic interactions with other components in the composite, thus significantly enhancing their mechanical properties. Considering the outstanding capabilities of carbon nanostructures in enhancing the mechanical properties of biocomposites and increasing their applicability in tissue engineering and the lack of comprehensive studies on their biosafety and role in increasing the mechanical behaviour of scaffolds, a comprehensive review on carbon nanostructures is provided in this study.

4.
Colloids Surf B Biointerfaces ; 228: 113430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37418814

RESUMO

Generally, hyperthermia is referred to the composites capability to increase local temperature in such a way that the generated heat would lead to cancerous or bacteria cells destruction, with minimum damage to normal tissue cells. Many different materials have been utilized for hyperthermia application via different heat generating methods. Carbon-based nanomaterials consisting of graphene oxide (GO), carbon nanotube (CNT), carbon dot (CD) and carbon quantum dot (CQD), nanodiamond (ND), fullerene and carbon fiber (CF), have been studied significantly for different applications including hyperthermia due to their biocompatibility, biodegradability, chemical and physical stability, thermal and electrical conductivity and in some cases photothermal conversion. Therefore, in this comprehensive review, a structure-based view on carbon nanomaterials application in hyperthermia therapy of cancer and bacteria via various methods such as optical, magnetic, ultrasonic and radiofrequency-induced hyperthermia is presented.


Assuntos
Hipertermia Induzida , Nanocompostos , Nanotubos de Carbono , Neoplasias , Humanos , Hipertermia Induzida/métodos , Neoplasias/terapia , Temperatura Alta
5.
Carbohydr Polym ; 300: 120246, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36372507

RESUMO

This work represents a biocompatible magnetic nanobiocomposite prepared by the composition of chitosan (CS) hydrogel, silk fibroin (SF), graphene oxide (GO), and Fe3O4 NPs. Terephthaloyl thiourea was applied as a cross-linking agent to cross-link the CS strings. The CS hydrogel/SF/GO/Fe3O4 nanobiocomposite with many characteristics, such as high structural uniformity, thermal stability, biocompatibility, and stability in an aqueous solution. Various characteristics of this novel magnetic nanobiocomposite were distinguished by FT-IR, EDX, FE-SEM, XRD, TGA, and VSM analysis. The FE-SEM images were taken to evaluate the size distribution of the magnetic nanoparticles (MNPs) between 39.9 and 73.3 nm as well. The performance of the prepared nanobiocomposite was assessed by the magnetic fluid hyperthermia process. Under the alternating magnetic field (AMF), the mean value of the specific absorption rate (SAR) was determined at 43.15 w/g.


Assuntos
Quitosana , Fibroínas , Hipertermia Induzida , Quitosana/química , Fibroínas/química , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Fenômenos Magnéticos
6.
Biomater Sci ; 10(24): 6911-6938, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36314845

RESUMO

A wound is defined as damage to the integrity of biological tissue, including skin, mucous membranes, and organ tissues. The treatment of these injuries is an important challenge for medical researchers. Various materials have been used for wound healing and dressing applications among which carbon nanomaterials have attracted significant attention due to their remarkable properties. In the present review, the latest studies on the application of carbon nanomaterials including graphene oxide (GO), reduced graphene oxide (rGO), carbon dots (CDs), carbon quantum dots (CQDs), carbon nanotubes (CNTs), carbon nanofibers (CNFs), and nanodiamonds (NDs) in wound dressing applications are evaluated. Also, a variety of carbon-based nanocomposites with advantages such as biocompatibility, hemocompatibility, reduced wound healing time, antibacterial properties, cell-adhesion, enhanced mechanical properties, and enhanced permeability to oxygen has been reported for the treatment of various wounds.


Assuntos
Nanotubos de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...