Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 12(2)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35204646

RESUMO

Breast cancer has affected many women worldwide. To perform detection and classification of breast cancer many computer-aided diagnosis (CAD) systems have been established because the inspection of the mammogram images by the radiologist is a difficult and time taken task. To early diagnose the disease and provide better treatment lot of CAD systems were established. There is still a need to improve existing CAD systems by incorporating new methods and technologies in order to provide more precise results. This paper aims to investigate ways to prevent the disease as well as to provide new methods of classification in order to reduce the risk of breast cancer in women's lives. The best feature optimization is performed to classify the results accurately. The CAD system's accuracy improved by reducing the false-positive rates.The Modified Entropy Whale Optimization Algorithm (MEWOA) is proposed based on fusion for deep feature extraction and perform the classification. In the proposed method, the fine-tuned MobilenetV2 and Nasnet Mobile are applied for simulation. The features are extracted, and optimization is performed. The optimized features are fused and optimized by using MEWOA. Finally, by using the optimized deep features, the machine learning classifiers are applied to classify the breast cancer images. To extract the features and perform the classification, three publicly available datasets are used: INbreast, MIAS, and CBIS-DDSM. The maximum accuracy achieved in INbreast dataset is 99.7%, MIAS dataset has 99.8% and CBIS-DDSM has 93.8%. Finally, a comparison with other existing methods is performed, demonstrating that the proposed algorithm outperforms the other approaches.

2.
Curr Med Imaging ; 16(7): 823-834, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33059553

RESUMO

Recently, medical imaging and machine learning gained significant attention in the early detection of brain tumor. Compound structure and tumor variations, such as change of size, make brain tumor segmentation and classification a challenging task. In this review, we survey existing work on brain tumor, their stages, survival rate of patients after each stage, and computerized diagnosis methods. We discuss existing image processing techniques with a special focus on preprocessing techniques and their importance for tumor enhancement, tumor segmentation, feature extraction and features reduction techniques. We also provide the corresponding mathematical modeling, classification, performance matrices, and finally important datasets. Last but not least, a detailed analysis of existing techniques is provided which is followed by future directions in this domain.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Algoritmos , Aprendizado de Máquina
3.
Curr Med Imaging ; 16(10): 1187-1200, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32250226

RESUMO

Breast Cancer is a common dangerous disease for women. Around the world, many women have died due to Breast cancer. However, in the initial stage, the diagnosis of breast cancer can save women's life. To diagnose cancer in the breast tissues, there are several techniques and methods. The image processing, machine learning, and deep learning methods and techniques are presented in this paper to diagnose the breast cancer. This work will be helpful to adopt better choices and reliable methods to diagnose breast cancer in an initial stage to save a women's life. To detect the breast masses, microcalcifications, and malignant cells,different techniques are used in the Computer-Aided Diagnosis (CAD) systems phases like preprocessing, segmentation, feature extraction, and classification. We have reported a detailed analysis of different techniques or methods with their usage and performance measurement. From the reported results, it is concluded that for breast cancer survival, it is essential to improve the methods or techniques to diagnose it at an initial stage by improving the results of the Computer-Aided Diagnosis systems. Furthermore, segmentation and classification phases are also challenging for researchers for the diagnosis of breast cancer accurately. Therefore, more advanced tools and techniques are still essential for the accurate diagnosis and classification of breast cancer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/diagnóstico , Computadores , Diagnóstico por Computador , Feminino , Humanos , Aprendizado de Máquina , Mamografia
4.
Microsc Res Tech ; 82(6): 741-763, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30768826

RESUMO

Skin cancer is being a most deadly type of cancers which have grown extensively worldwide from the last decade. For an accurate detection and classification of melanoma, several measures should be considered which include, contrast stretching, irregularity measurement, selection of most optimal features, and so forth. A poor contrast of lesion affects the segmentation accuracy and also increases classification error. To overcome this problem, an efficient model for accurate border detection and classification is presented. The proposed model improves the segmentation accuracy in its preprocessing phase, utilizing contrast enhancement of lesion area compared to the background. The enhanced 2D blue channel is selected for the construction of saliency map, at the end of which threshold function produces the binary image. In addition, particle swarm optimization (PSO) based segmentation is also utilized for accurate border detection and refinement. Few selected features including shape, texture, local, and global are also extracted which are later selected based on genetic algorithm with an advantage of identifying the fittest chromosome. Finally, optimized features are later fed into the support vector machine (SVM) for classification. Comprehensive experiments have been carried out on three datasets named as PH2, ISBI2016, and ISIC (i.e., ISIC MSK-1, ISIC MSK-2, and ISIC UDA). The improved accuracy of 97.9, 99.1, 98.4, and 93.8%, respectively obtained for each dataset. The SVM outperforms on the selected dataset in terms of sensitivity, precision rate, accuracy, and FNR. Furthermore, the selection method outperforms and successfully removed the redundant features.


Assuntos
Dermoscopia/métodos , Processamento de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico , Melanoma/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Algoritmos , Humanos , Sensibilidade e Especificidade
5.
Microsc Res Tech ; 81(6): 528-543, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29464868

RESUMO

Melanoma is the deadliest type of skin cancer with highest mortality rate. However, the annihilation in early stage implies a high survival rate therefore, it demands early diagnosis. The accustomed diagnosis methods are costly and cumbersome due to the involvement of experienced experts as well as the requirements for highly equipped environment. The recent advancements in computerized solutions for these diagnoses are highly promising with improved accuracy and efficiency. In this article, we proposed a method for the classification of melanoma and benign skin lesions. Our approach integrates preprocessing, lesion segmentation, features extraction, features selection, and classification. Preprocessing is executed in the context of hair removal by DullRazor, whereas lesion texture and color information are utilized to enhance the lesion contrast. In lesion segmentation, a hybrid technique has been implemented and results are fused using additive law of probability. Serial based method is applied subsequently that extracts and fuses the traits such as color, texture, and HOG (shape). The fused features are selected afterwards by implementing a novel Boltzman Entropy method. Finally, the selected features are classified by Support Vector Machine. The proposed method is evaluated on publically available data set PH2. Our approach has provided promising results of sensitivity 97.7%, specificity 96.7%, accuracy 97.5%, and F-score 97.5%, which are significantly better than the results of existing methods available on the same data set. The proposed method detects and classifies melanoma significantly good as compared to existing methods.


Assuntos
Detecção Precoce de Câncer/métodos , Interpretação de Imagem Assistida por Computador/métodos , Melanoma/diagnóstico , Neoplasias Cutâneas/diagnóstico , Algoritmos , Humanos , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...