Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Haematologica ; 108(2): 382-393, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36134452

RESUMO

Acute lymphoblastic leukemia (ALL) is the most frequent cancer diagnosed in children. Despite the great progress achieved over the last 40 years, with cure rates now exceeding 85%, refractory or relapsed ALL still exhibit a dismal prognosis. This poor outcome reflects the lack of treatment options specifically targeting relapsed or refractory ALL. In order to address this gap, we performed whole-genome CRISPR/Cas drop-out screens on a panel of seven B-ALL cell lines. Our results demonstrate that while there was a significant overlap in gene essentiality between ALL cell lines and other cancer types survival of ALL cell lines was dependent on several unique metabolic pathways, including an exquisite sensitivity to GPX4 depletion and ferroptosis induction. Detailed molecular analysis of B-ALL cells suggest that they are primed to undergo ferroptosis as they exhibit high steady-state oxidative stress potential, a low buffering capacity, and a disabled GPX4-independent secondary lipid peroxidation detoxification pathway. Finally, we validated the sensitivity of BALL to ferroptosis induction using patient-derived B-ALL samples.


Assuntos
Ferroptose , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ferroptose/genética , Linhagem Celular , Peroxidação de Lipídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico
2.
Genes Dev ; 36(11-12): 664-683, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710139

RESUMO

Chromosomal translocations frequently promote carcinogenesis by producing gain-of-function fusion proteins. Recent studies have identified highly recurrent chromosomal translocations in patients with endometrial stromal sarcomas (ESSs) and ossifying fibromyxoid tumors (OFMTs), leading to an in-frame fusion of PHF1 (PCL1) to six different subunits of the NuA4/TIP60 complex. While NuA4/TIP60 is a coactivator that acetylates chromatin and loads the H2A.Z histone variant, PHF1 is part of the Polycomb repressive complex 2 (PRC2) linked to transcriptional repression of key developmental genes through methylation of histone H3 on lysine 27. In this study, we characterize the fusion protein produced by the EPC1-PHF1 translocation. The chimeric protein assembles a megacomplex harboring both NuA4/TIP60 and PRC2 activities and leads to mislocalization of chromatin marks in the genome, in particular over an entire topologically associating domain including part of the HOXD cluster. This is linked to aberrant gene expression-most notably increased expression of PRC2 target genes. Furthermore, we show that JAZF1-implicated with a PRC2 component in the most frequent translocation in ESSs, JAZF1-SUZ12-is a potent transcription activator that physically associates with NuA4/TIP60, its fusion creating outcomes similar to those of EPC1-PHF1 Importantly, the specific increased expression of PRC2 targets/HOX genes was also confirmed with ESS patient samples. Altogether, these results indicate that most chromosomal translocations linked to these sarcomas use the same molecular oncogenic mechanism through a physical merge of NuA4/TIP60 and PRC2 complexes, leading to mislocalization of histone marks and aberrant Polycomb target gene expression.


Assuntos
Neoplasias do Endométrio , Sarcoma do Estroma Endometrial , Sarcoma , Cromatina , Proteínas de Ligação a DNA/metabolismo , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/metabolismo , Neoplasias do Endométrio/patologia , Feminino , Histonas/metabolismo , Humanos , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Sarcoma/genética , Sarcoma do Estroma Endometrial/genética , Sarcoma do Estroma Endometrial/metabolismo , Sarcoma do Estroma Endometrial/patologia , Translocação Genética/genética
3.
J Biotechnol ; 307: 87-97, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31697975

RESUMO

Alpha-1-antitrypsin (A1AT) is an abundant serum inhibitor of serine proteases. A1AT deficiency is a common genetic disorder which is currently treated with augmentation therapies. These treatments involve weekly injections of patients with purified plasma-derived A1AT. Such therapies can be extremely expensive and rely on plasma donors. Hence, large-scale production of recombinant A1AT (rA1AT) could greatly benefit these patients, as it could decrease the cost of treatments, reduce biosafety concerns and ensure quantitative and qualitative controls of the protein. In this report, we sought to produce α2,6-sialylated rA1AT with our cumate-inducible stable CHO pool expression system. Our different CHO pools could reach volumetric productivities of 1,2 g/L. The human α2,6-sialyltransferase was stably expressed in these cells in order to mimic elevated α2,6-sialylation levels of native A1AT protein. Sialylation of the recombinant protein was stable over the duration of the fed-batch production phase and was higher in a pool where cells were sorted and enriched by FACS based on cell-surface α2,6-sialylation. Addition of ManNAc to the cell culture media during production enhanced both α2,3 and α2,6 A1AT sialylation levels whereas addition of 2F-peracetylfucose potently inhibited fucosylation of the protein. Finally, we demonstrated that rA1AT proteins exhibited human neutrophil elastase inhibitory activities similar to the commercial human plasma-derived A1AT.


Assuntos
Elastase de Leucócito/antagonistas & inibidores , Sialiltransferases/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Medicamentos Biossimilares/metabolismo , Células CHO , Cricetulus , Humanos , Proteínas Recombinantes , Sialiltransferases/genética , alfa 1-Antitripsina/genética , beta-D-Galactosídeo alfa 2-6-Sialiltransferase
4.
J Biotechnol ; 251: 128-140, 2017 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28465209

RESUMO

Over the last years, the biopharmaceutical industry has significantly turned its biologics production towards mammalian cell expression systems. The presence of glycosylation machineries within these systems, and the fact that monoclonal antibodies represent today the vast majority of new therapeutic candidates, has largely influenced this new direction. Recombinant glycoproteins, including monoclonal antibodies, have shown different biological properties based on their glycan profiles. Thus, the industry has developed cell engineering strategies not only to improve cell's specific productivity, but also to adapt their glycosylation profiles for increased therapeutic activity. Additionally, the advance of "omics" technologies has recently given rise to new possibilities in improving these expression platforms and will significantly help developing new strategies, in particular for CHO (Chinese Hamster Ovary) cells.


Assuntos
Glicoproteínas/biossíntese , Animais , Engenharia Celular , Linhagem Celular , Genômica , Humanos , Proteínas Recombinantes/biossíntese
5.
Nat Commun ; 7: 12700, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27624942

RESUMO

The identification of cancer-associated mutations in the tricarboxylic acid (TCA) cycle enzymes isocitrate dehydrogenases 1 and 2 (IDH1/2) highlights the prevailing notion that aberrant metabolic function can contribute to carcinogenesis. IDH1/2 normally catalyse the oxidative decarboxylation of isocitrate into α-ketoglutarate (αKG). In gliomas and acute myeloid leukaemias, IDH1/2 mutations confer gain-of-function leading to production of the oncometabolite R-2-hydroxyglutarate (2HG) from αKG. Here we show that generation of 2HG by mutated IDH1/2 leads to the activation of mTOR by inhibiting KDM4A, an αKG-dependent enzyme of the Jumonji family of lysine demethylases. Furthermore, KDM4A associates with the DEP domain-containing mTOR-interacting protein (DEPTOR), a negative regulator of mTORC1/2. Depletion of KDM4A decreases DEPTOR protein stability. Our results provide an additional molecular mechanism for the oncogenic activity of mutant IDH1/2 by revealing an unprecedented link between TCA cycle defects and positive modulation of mTOR function downstream of the canonical PI3K/AKT/TSC1-2 pathway.


Assuntos
Glutaratos/metabolismo , Isocitrato Desidrogenase/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Astrócitos/metabolismo , Ciclo do Ácido Cítrico , Glioma/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , PTEN Fosfo-Hidrolase/genética , Ubiquitinação , Proteínas Contendo Repetições de beta-Transducina/metabolismo
6.
EMBO J ; 35(2): 176-92, 2016 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-26620551

RESUMO

During DNA replication, thousands of replication origins are activated across the genome. Chromatin architecture contributes to origin specification and usage, yet it remains unclear which chromatin features impact on DNA replication. Here, we perform a RNAi screen for chromatin regulators implicated in replication control by measuring RPA accumulation upon replication stress. We identify six factors required for normal rates of DNA replication and characterize a function of the bromodomain and PHD finger-containing protein 3 (BRPF3) in replication initiation. BRPF3 forms a complex with HBO1 that specifically acetylates histone H3K14, and genomewide analysis shows high enrichment of BRPF3, HBO1 and H3K14ac at ORC1-binding sites and replication origins found in the vicinity of TSSs. Consistent with this, BRPF3 is necessary for H3K14ac at selected origins and efficient origin activation. CDC45 recruitment, but not MCM2-7 loading, is impaired in BRPF3-depleted cells, identifying a BRPF3-dependent function of HBO1 in origin activation that is complementary to its role in licencing. We thus propose that BRPF3-HBO1 acetylation of histone H3K14 around TSS facilitates efficient activation of nearby replication origins.


Assuntos
Ciclo Celular/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Origem de Replicação/fisiologia , Acetilação , Ciclo Celular/genética , Linhagem Celular , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Replicação do DNA/genética , Replicação do DNA/fisiologia , Histona Acetiltransferases/genética , Humanos , Imuno-Histoquímica , Origem de Replicação/genética
7.
Nucleic Acids Res ; 44(1): 472-84, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26626149

RESUMO

BRPF1 (bromodomain PHD finger 1) is a core subunit of the MOZ histone acetyltransferase (HAT) complex, critical for normal developmental programs and implicated in acute leukemias. BRPF1 contains a unique assembly of zinc fingers, termed a PZP domain, the physiological role of which remains unclear. Here, we elucidate the structure-function relationship of this novel epigenetic reader and detail the biological and mechanistic consequences of its interaction with nucleosomes. PZP has a globular architecture and forms a 2:1 stoichiometry complex with the nucleosome, bivalently interacting with histone H3 and DNA. This binding impacts the nucleosome dynamics, shifting the DNA unwrapping/rewrapping equilibrium toward the unwrapped state and increasing DNA accessibility. We demonstrate that the DNA-binding function of the BRPF1 PZP domain is required for the MOZ-BRPF1-ING5-hEaf6 HAT complex to be recruited to chromatin and to acetylate nucleosomal histones. Our findings reveal a novel link between chromatin dynamics and MOZ-mediated acetylation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cromatina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/genética , Sequência de Aminoácidos , Cromatina/genética , DNA/química , DNA/metabolismo , Proteínas de Ligação a DNA , Histonas/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos , Proteínas Nucleares/genética , Nucleossomos/genética , Ligação Proteica , Conformação Proteica , Estabilidade Proteica , Alinhamento de Sequência
8.
Genes Dev ; 28(10): 1029-41, 2014 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-24831698

RESUMO

Histone modifiers like acetyltransferases, methyltransferases, and demethylases are critical regulators of most DNA-based nuclear processes, de facto controlling cell cycle progression and cell fate. These enzymes perform very precise post-translational modifications on specific histone residues, which in turn are recognized by different effector modules/proteins. We now have a better understanding of how these enzymes exhibit such specificity. As they often reside in multisubunit complexes, they use associated factors to target their substrates within chromatin structure and select specific histone mark-bearing nucleosomes. In this review, we cover the current understanding of how histone modifiers select their histone targets. We also explain how different experimental approaches can lead to conflicting results about the histone specificity and function of these enzymes.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Enzimas/metabolismo , Nucleossomos/metabolismo , RNA não Traduzido/metabolismo , Especificidade por Substrato
9.
Epigenetics ; 9(2): 186-93, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24169304

RESUMO

The MOZ/MORF complexes represent an example of a chromatin-binding assembly whose recruitment to specific genomic regions and activity can be fine-tuned by posttranslational modifications of histones. Here we detail the structures and biological functions of epigenetic readers present in the four core subunits of the MOZ/MORF complexes, highlight the imperative role of combinatorial readout by the multiple readers, and discuss new research directions to advance our understanding of histone acetylation.


Assuntos
Epigênese Genética , Histona Acetiltransferases/metabolismo , Proteínas Nucleares/metabolismo , Acetilação , Animais , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Humanos , Proteínas Nucleares/genética , Conformação Proteica , Multimerização Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Dedos de Zinco
10.
Haematologica ; 99(2): 314-21, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24038028

RESUMO

The introduction of multiagent treatment protocols has led to a remarkable increase in survival rates for children diagnosed with acute lymphoblastic leukemia, yet for a subpopulation of patients, resistance to chemotherapeutics remains an obstacle to successful treatment. Here we investigate the role of the mitochondrial (or intrinsic) apoptosis pathway in modulating the onset and outcomes of childhood acute lymphoblastic leukemia. Cell death is a highly regulated process that plays an essential role in regulating cell homeostasis, particularly in tissues with high intrinsic proliferating capacity such as the hematopoietic system. Following the underlying paradigm that cis-acting genetic variation can influence disease risk and outcomes by modulating gene expression, we performed a systematic analysis of the proximal promoter regions of 21 genes involved in apoptosis. Using gene reporter assays, we show that promoter variations in 11 intrinsic apoptosis genes, including ADPRT, APAF1, BCL2, BAD, BID, MCL1, BIRC4, BCL2L1, ENDOG, YWHAB, and YWHAQ, influence promoter activity in an allele-specific manner. We also show that correlated promoter variation and increased expression of MCL1 is associated with reduced overall survival among high-risk patients receiving higher doses of corticosteroid, suggesting that increased expression of this anti-apoptosis gene could lead to reduced cell death and influence treatment response in a disease- and dose-responsive manner.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose/genética , Regulação Leucêmica da Expressão Gênica/genética , Proteínas de Neoplasias , Polimorfismo Genético , Adolescente , Adulto , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/mortalidade
11.
Genes Dev ; 27(18): 2009-24, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24065767

RESUMO

Histone acetyltransferases (HATs) assemble into multisubunit complexes in order to target distinct lysine residues on nucleosomal histones. Here, we characterize native HAT complexes assembled by the BRPF family of scaffold proteins. Their plant homeodomain (PHD)-Zn knuckle-PHD domain is essential for binding chromatin and is restricted to unmethylated H3K4, a specificity that is reversed by the associated ING subunit. Native BRPF1 complexes can contain either MOZ/MORF or HBO1 as catalytic acetyltransferase subunit. Interestingly, while the previously reported HBO1 complexes containing JADE scaffold proteins target histone H4, the HBO1-BRPF1 complex acetylates only H3 in chromatin. We mapped a small region to the N terminus of scaffold proteins responsible for histone tail selection on chromatin. Thus, alternate choice of subunits associated with HBO1 can switch its specificity between H4 and H3 tails. These results uncover a crucial new role for associated proteins within HAT complexes, previously thought to be intrinsic to the catalytic subunit.


Assuntos
Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Acetilação , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Proteínas de Ligação a DNA , Células HEK293 , Células HeLa , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Metilação , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Especificidade por Substrato , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
12.
Hum Genomics ; 6: 15, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23244604

RESUMO

Although mutations in the oncoprotein murine double minute 2 (MDM2) are rare, MDM2 gene overexpression has been observed in several human tumors. Given that even modest changes in MDM2 levels might influence the p53 tumor suppressor signaling pathway, we postulated that sequence variation in the promoter region of MDM2 could lead to disregulated expression and variation in gene dosage. Two promoters have been reported for MDM2; an internal promoter (P2), which is located near the end of intron 1 and is p53-responsive, and an upstream constitutive promoter (P1), which is p53-independent. Both promoter regions contain DNA variants that could influence the expression levels of MDM2, including the well-studied single nucleotide polymorphism (SNP) SNP309, which is located in the promoter P2; i.e., upstream of exon 2. In this report, we screened the promoter P1 for DNA variants and assessed the functional impact of the corresponding SNPs. Using the dbSNP database and genotyping validation in individuals of European descent, we identified three common SNPs (-1494 G > A; indel 40 bp; and -182 C > G). Three major promoter haplotypes were inferred by using these three promoter SNPs together with rs2279744 (SNP309). Following subcloning into a gene reporter system, we found that two of the haplotypes significantly influenced MDM2 promoter activity in a haplotype-specific manner. Site-directed mutagenesis experiments indicated that the 40 bp insertion/deletion variation is causing the observed allelic promoter activity. This study suggests that part of the variability in the MDM2 expression levels could be explained by allelic p53-independent P1 promoter activity.


Assuntos
Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-mdm2/genética , Alelos , Éxons , Regulação da Expressão Gênica , Genes Reporter , Haplótipos , Células HeLa , Células Hep G2 , Humanos , Íntrons , Desequilíbrio de Ligação , Mutagênese Sítio-Dirigida , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Risco , Software , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Nat Struct Mol Biol ; 19(12): 1218-27, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23211769

RESUMO

Post-translational modifications (PTMs) of histones provide a fine-tuned mechanism for regulating chromatin structure and dynamics. PTMs can alter direct interactions between histones and DNA and serve as docking sites for protein effectors, or readers, of these PTMs. Binding of the readers recruits or stabilizes various components of the nuclear signaling machinery at specific genomic sites, mediating fundamental DNA-templated processes, including gene transcription and DNA recombination, replication and repair. In this review, we highlight the latest advances in characterizing histone-binding mechanisms and identifying new epigenetic readers and summarize the functional significance of PTM recognition.


Assuntos
Epigênese Genética , Histonas/química , Acetilação , DNA/química , DNA/genética , Metilação de DNA , Reparo do DNA , Replicação do DNA , Modelos Moleculares , Fosforilação , Recombinação Genética , Transcrição Gênica
14.
Nat Struct Mol Biol ; 19(12): 1266-72, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23142980

RESUMO

The PHD finger protein 1 (PHF1) is essential in epigenetic regulation and genome maintenance. Here we show that the Tudor domain of human PHF1 binds to histone H3 trimethylated at Lys36 (H3K36me3). We report a 1.9-Å resolution crystal structure of the Tudor domain in complex with H3K36me3 and describe the molecular mechanism of H3K36me3 recognition using NMR. Binding of PHF1 to H3K36me3 inhibits the ability of the Polycomb PRC2 complex to methylate Lys27 of histone H3 in vitro and in vivo. Laser microirradiation data show that PHF1 is transiently recruited to DNA double-strand breaks, and PHF1 mutants impaired in the H3K36me3 interaction exhibit reduced retention at double-strand break sites. Together, our findings suggest that PHF1 can mediate deposition of the repressive H3K27me3 mark and acts as a cofactor in early DNA-damage response.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/química , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas do Grupo Polycomb , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
15.
J Mol Biol ; 424(5): 328-38, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23063713

RESUMO

MORF [MOZ (monocytic leukemia zinc-finger protein)-related factor] and MOZ are catalytic subunits of histone acetyltransferase (HAT) complexes essential in hematopoiesis, neurogenesis, skeletogenesis and other developmental programs and implicated in human leukemias. The canonical HAT domain of MORF/MOZ is preceded by a tandem of plant homeodomain (PHD) fingers whose biological roles and requirements for MORF/MOZ activity are unknown. Here, we demonstrate that the tandem PHD1/2 fingers of MORF recognize the N-terminal tail of histone H3. Acetylation of Lys9 (H3K9ac) or Lys14 (H3K14ac) enhances binding of MORF PHD1/2 to unmodified H3 peptides twofold to threefold. The selectivity for acetylated H3 tail is conserved in the double PHD1/2 fingers of MOZ. This interaction requires the intact N-terminus of histone H3 and is inhibited by trimethylation of Lys4. Biochemical analysis using NMR, fluorescence spectroscopy and mutagenesis identified key amino acids of MORF PHD1/2 necessary for the interaction with histones. Fluorescence microscopy and immunoprecipitation experiments reveal that both PHD fingers are required for binding to H3K14ac in vivo and localization to chromatin. The HAT assays indicate that the interaction with H3K14ac may promote enzymatic activity in trans. Together, our data suggest that the PHD1/2 fingers play a role in MOZ/MORF HATs association with the chromatic regions enriched in acetylated marks.


Assuntos
Cromatina/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Histona Acetiltransferases/química , Humanos , Imunoprecipitação , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Espectrometria de Fluorescência
16.
Mol Cell Biol ; 32(3): 689-703, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22144582

RESUMO

Acetyltransferase complexes of the MYST family with distinct substrate specificities and functions maintain a conserved association with different ING tumor suppressor proteins. ING complexes containing the HBO1 acetylase are a major source of histone H3 and H4 acetylation in vivo and play critical roles in gene regulation and DNA replication. Here, our molecular dissection of HBO1/ING complexes unravels the protein domains required for their assembly and function. Multiple PHD finger domains present in different subunits bind the histone H3 N-terminal tail with a distinct specificity toward lysine 4 methylation status. We show that natively regulated association of the ING4/5 PHD domain with HBO1-JADE determines the growth inhibitory function of the complex, linked to its tumor suppressor activity. Functional genomic analyses indicate that the p53 pathway is a main target of the complex, at least in part through direct transcription regulation at the initiation site of p21/CDKN1A. These results demonstrate the importance of ING association with MYST acetyltransferases in controlling cell proliferation, a regulated link that accounts for the reported tumor suppressor activities of these complexes.


Assuntos
Proliferação de Células , Histona Acetiltransferases/metabolismo , Linhagem Celular , Histona Acetiltransferases/química , Histonas/química , Histonas/metabolismo , Humanos , Estrutura Terciária de Proteína , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Quinases Ativadas por p21/química , Quinases Ativadas por p21/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...