Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Biofuels ; 12: 114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31086566

RESUMO

BACKGROUND: In the present work, the main inhibitors of the yeast cells (vanillin, furfural, formic, and levulinic acid) were generated by pretreatments or hydrolysis (sulfuric acid or enzymes) to convert reducing sugars into ethanol. Inhibitors were added at increasing concentrations to the SD-medium containing yeast extract while negative effects on yeast cells were observed. Statistical analyses were applied to predict and interpret results related to biomass production. RESULTS: Inhibitors affected productivities and yields of biomass and ethanol when added to SD-medium. Based on the 23 full-central-composite design, "predicted" and "observed" values of ethanol and biomass were obtained in presence of the major inhibitors, which were acetic acid, formic acid, and levulinic acids. Increases in biomass and ethanol production are described in the Response surface graphs (RSM graphs) that resulted from multiple interactions between inhibitors. Positive interactions between the inhibitors occurred at low concentrations and pH values. The results were experimentally validated. CONCLUSIONS: Statistical analysis is an extremely useful tool for predicting data during process monitoring, while re-adjustments of conditions can be performed, whenever necessary. In addition, the development of new strains of yeast with high tolerance to biomass inhibitors will have a major impact on the production of second-generation ethanol. Increases in fermentation activity of the yeast Saccharomyces cerevisiae in a mixture containing low concentrations of inhibitors were observed.

2.
Biotechnol Biofuels ; 8: 205, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26633992

RESUMO

BACKGROUND: Ethanol production from sugarcane bagasse requires a pretreatment step to disrupt the cellulose-hemicellulose-lignin complex and to increase biomass digestibility, thus allowing the obtaining of high yields of fermentable sugars for the subsequent fermentation. Hydrothermal and lime pretreatments have emerged as effective methods in preparing the lignocellulosic biomass for bioconversion. These pretreatments are advantageous because they can be performed under mild temperature and pressure conditions, resulting in less sugar degradation compared with other pretreatments, and also are cost-effective and environmentally sustainable. In this study, we evaluated the effect of these pretreatments on the efficiency of enzymatic hydrolysis of raw sugarcane bagasse obtained directly from mill without prior screening. In addition, we evaluated the structure and composition modifications of this bagasse after lime and hydrothermal pretreatments. RESULTS: The highest cellulose hydrolysis rate (70 % digestion) was obtained for raw sugarcane bagasse pretreated with lime [0.1 g Ca(OH)2/g raw] for 60 min at 120 °C compared with hydrothermally pretreated bagasse (21 % digestion) under the same time and temperature conditions. Chemical composition analyses showed that the lime pretreatment of bagasse promoted high solubilization of lignin (30 %) and hemicellulose (5 %) accompanied by a cellulose accumulation (11 %). Analysis of pretreated bagasse structure revealed that lime pretreatment caused considerable damage to the bagasse fibers, including rupture of the cell wall, exposing the cellulose-rich areas to enzymatic action. CONCLUSION: We showed that lime pretreatment is effective in improving enzymatic digestibility of raw sugarcane bagasse, even at low lime loading and over a short pretreatment period. It was also demonstrated that this pretreatment caused alterations in the structure and composition of raw bagasse, which had a pronounced effect on the enzymes accessibility to the substrate, resulting in an increase of cellulose hydrolysis rate. These results indicate that the use of raw sugarcane bagasse (without prior screening) pretreated with lime (cheaper and environmentally friendly reagent) may represent a cost reduction in the cellulosic ethanol production.

3.
Appl Microbiol Biotechnol ; 83(4): 627-37, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19234699

RESUMO

Aiming to obtain rapid fermentations with high ethanol yields and a retention of high final viabilities (responses), a 2(3) full-factorial central composite design combined with response surface methodology was employed using inoculum size, sucrose concentration, and temperature as independent variables. From this statistical treatment, two well-fitted regression equations having coefficients significant at the 5% level were obtained to predict the viability and ethanol production responses. Three-dimensional response surfaces showed that increasing temperatures had greater negative effects on viability than on ethanol production. Increasing sucrose concentrations improved both ethanol production and viability. The interactions between the inoculum size and the sucrose concentrations had no significant effect on viability. Thus, the lowering of the process temperature is recommended in order to minimize cell mortality and maintain high levels of ethanol production when the temperature is on the increase in the industrial reactor. Optimized conditions (200 g/l initial sucrose, 40 g/l of dry cell mass, 30 degrees C) were experimentally confirmed and the optimal responses are 80.8 +/- 2.0 g/l of maximal ethanol plus a viability retention of 99.0 +/- 3.0% for a 4-h fermentation period. During consecutive fermentations with cell reuse, the yeast cell viability has to be kept at a high level in order to prevent the collapse of the process.


Assuntos
Meios de Cultura/química , Etanol/metabolismo , Viabilidade Microbiana , Saccharomyces cerevisiae/fisiologia , Temperatura , Biomassa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Sacarose/metabolismo
4.
World J Microbiol Biotechnol ; 23(12): 1667, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27517821

RESUMO

This work investigated the effects of increasing temperature from 30°C to 47°C on the physiological and genetic characteristics of Saccharomyces cerevisiae strain 63M after continuous fermentation with cell recycling in a system of five reactors in series. Steady state was attained at 30°C, and then the temperature of the system was raised so it ranged from 35°C in the last reactor to 43°C in the first reactor or feeding reactor with a 2°C difference between reactors. After 15 days at steady state, the temperature was raised from 37°C to 45°C for 25 days at steady state, then from 39°C to 47°C for 20 days at steady state. Starter strain 63M was a hybrid strain constructed to have a MAT a/α, LYS/lys, URA/ura genotype. This hybrid yeast showed vigorous growth on plates at 40°C, weak growth at 41°C, positive assimilation of melibiose, positive fermentation of galactose, raffinose and sucrose. Of 156 isolates obtained from this system at the end of the fermentation process, only 17.3% showed the same characteristics as starter strain 63M. Alterations in mating type reaction and in utilization of raffinose, melibiose, and sucrose were identified. Only 1.9% of the isolates lost the ability to grow at 40°C. Isolates showing requirements for lysine and uracil were also obtained. In addition, cell survival was observed at 39-47°C, but no isolates showing growth above 41°C were obtained.

5.
Colloids Surf B Biointerfaces ; 48(1): 77-83, 2006 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-16500092

RESUMO

Separation of microbial cells by flotation recovery is usually carried out in industrial reactors or wastewater treatment systems, which contain a complex mixture of microbial nutrients and excretion products. In the present study, the separation of yeast cells by flotation recovery was carried out using a simple flotation recovery systems containing washed yeast cells resuspended in water in order to elucidate the effects of additives (defined amounts of organic and inorganic acids, ethanol, surfactants and sodium chloride) on the cellular interactions at interfaces (cell/aqueous phase and cell/air bubble). When sodium chloride, organic acids (notably propionic, succinic and acetic acids) and organic surfactants (sodium dodecyl sulphate (SDS), cetyltrimethylammonium bromide (CTAB) and Nonidet P40) were added to the flotation recovery system, significant increases in the cell recovery of yeast hydrophobic cells (Saccharomyces cerevisiae, strain FLT-01) were observed. The association of ethanol to acetic acid solution (a minor by-product of alcoholic fermentation) in the flotation recovery system, containing washed cells of strain FLT-01 resuspended in water, leading to an increased flotation recovery at pH 5.5. Thus, the association among products of the cellular metabolism (e.g., ethanol and acetic acid) can improve yeast cell recovery by flotation recovery.


Assuntos
Compostos Inorgânicos/metabolismo , Compostos Orgânicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Purificação da Água/métodos , Água/química , Ácido Acético/metabolismo , Biomassa , Cetrimônio , Compostos de Cetrimônio/metabolismo , Meios de Cultura , Etanol/metabolismo , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Polietilenoglicóis/metabolismo , Propionatos/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Cloreto de Sódio/metabolismo , Dodecilsulfato de Sódio/metabolismo , Ácido Succínico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...