Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 57(10): 4695-4705, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38827958

RESUMO

Salt acts as a plasticizer in polyelectrolyte complexes (PECs), which impacts the physical, thermal, and mechanical properties, thus having implications in applications, such as drug delivery, energy storage, and smart coatings. Added salt disrupts polycation-polyanion intrinsic ion pairs, lowering a hydrated PEC's glass transition temperature (Tg). However, the relative influence of counterion type on the PEC's Tg is not well understood. Here, the effect of anion type (NaCl, NaBr, NaNO3, and NaI) on the Tg of solid-like, hydrated PECs composed of poly(diallydimethylammonium) (PDADMA)-poly(styrenesulfonate) (PSS) is investigated. With increasing the chaotropic nature of the salt anion, the Tg decreases. The relative differences are attributed to the doping level, the amount of bound water, the mobility of water molecules within the PECs, and the strength of interactions between the PEs. For all studied salt concentrations and salt types, the Tg followed the scaling of -1/Tg ≈ ln([IP]/[H2O]), in which [IP]/[H2O] is the ratio of intrinsic pairs to water. The scaling estimates that about 7 to 17% of the intrinsic ion pairs should be weakened for the PEC to partake in a glass transition. Put together, this study highlights that the Tg in PECs is impacted by the salt anion, but the mechanism of the glass transition remains unchanged.

2.
Macromolecules ; 57(5): 2363-2375, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495383

RESUMO

The coacervation and complexation of oppositely charged polyelectrolytes are dependent on numerous environmental and preparatory factors, but temperature is often overlooked. Temperature effects remain unclear because the temperature dependence of both the dielectric constant and polymer-solvent interaction parameter can yield lower and/or upper critical solution phase behaviors for PECs. Further, secondary interactions, such as hydrogen bonding, can affect the temperature response of a PEC. That is, mixtures of oppositely charged polyelectrolytes can exhibit phase separation upon lowering and/or increasing the mixture's temperature. Here, the phase behavior of poly(diallylmethylammonium)/poly(acrylic acid) (PDADMA/PAA) complexes under varying KBr ionic strengths, mixing ratios, and temperatures at a fixed pH (in which PAA hydrogen bonding can occur) is examined. At room temperature, the PDADMA/PAA PECs exhibit four different phase states: precipitate, coexisting precipitate and coacervate, solid-like gel, and coacervate. Variable-temperature optical microscopy reveals the upper critical solution temperature (UCST) at which each phase transitioned to a solution state. Interestingly, the UCST value is highly dependent on the original phase of the PEC, in which solid-like precipitates exhibit higher UCST values. Large-scale all-atom molecular dynamics (MD) simulations support that precipitates exhibit kinetic trapping, which may contribute to the higher UCST values observed in the experiment. Taken together, this study highlights the significance of temperature on the phase behavior of PECs, which may play a larger role in stimuli-responsive materials, membraneless organelles, and separations applications.

3.
Langmuir ; 39(42): 14823-14839, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37819874

RESUMO

Polyelectrolyte multilayers (PEMs) or polyelectrolyte complexes (PECs), formed by layer-by-layer assembly or the mixing of oppositely charged polyelectrolytes (PEs) in aqueous solution, respectively, have potential applications in health, energy, and the environment. PEMs and PECs are very tunable because their structure and properties are influenced by factors such as pH, ionic strength, salt type, humidity, and temperature. Therefore, it is increasingly important to understand how these factors affect PECs and PEMs on a molecular level. In this Feature Article, we summarize our contributions to the field in the development of approaches to quantify the swelling, thermal properties, and dynamic mechanical properties of PEMs and PECs. First, the role of water as a plasticizer and in the glass-transition temperature (Tg) in both strong poly(diallyldimethylammonium)/poly(sodium 4-styrenesulfonate) (PDADMA/PSS) and weak poly(allylamine hydrochloride)/poly(acrylic acid) (PAH/PAA) systems is presented. Then, factors influencing the dynamics of PECs and PEMs are discussed. We also reflect on the swelling of PEMs in response to different salts and solvent additives. Last, the nature of water's microenvironment in PEMs/PECs is discussed. A special emphasis is placed on experimental techniques, along with molecular simulations. Taken together, this review presents an outlook and offers recommendations for future research directions, such as studying the additional effects of hydrogen-bonding hydrophobic interactions.

4.
Soft Matter ; 15(39): 7823-7831, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31524209

RESUMO

All-atom molecular dynamics simulations are used to investigate the polyelectrolyte-specific influence of hydration and temperature on water diffusion in hydrated polyelectrolyte complexes (PECs). Two model PECs were compared: poly(allylamine hydrochloride) (PAH)-poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium) (PDADMA)-poly(acrylic acid) (PAA). The findings show that the strength of the hydrogen bonding i.e. polyelectrolyte water interaction has enormous influence on the water mobility, which has implications for PEC structure and properties. A 10-fold difference in the average water diffusion coefficient between PAH-PSS and PDADMA-PAA PECs at the same hydration level is observed. The vast majority of the water molecules hydrating the PDADMA-PAA PECs, for hydrations in the range of 26-38 wt%, are effectively immobilized, whereas for PAH-PSS PECs the amount of immobilized water decreases with hydration. This points to the polyelectrolyte-specific character of the PE-water hydrogen bonding relationship with temperature. PAA-water hydrogen bonds are found to be significantly less sensitive to temperature than for PSS-water. The polyelectrolyte-water interactions, investigated via radial distribution function, hydrogen bond distance and angle distributions, are connected with resulting structure of the PECs. The PDADMA-PAA and PAH-PSS PECs are prepared experimentally and the states of water at different hydration levels is determined using differential scanning calorimetry (DSC). Experiments confirm the differences between PDADMA-PAA and PAH-PSS PECs observed in the theoretical modelling. The results suggest that the initial predictions of the PEC's bonding with water can be based on simple molecular-level considerations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...