Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 116(5): 1164-1175, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30597522

RESUMO

Human pluripotent stem cell-derived endothelial cells (hPSC-ECs) present an attractive alternative to primary EC sources for vascular grafting. However, there is a need to mature them towards either an arterial or venous subtype. A vital environmental factor involved in the arteriovenous specification of ECs during early embryonic development is fluid shear stress; therefore, there have been attempts to employ adult arterial shear stress conditions to mature hPSC-ECs. However, hPSC-ECs are naïve to fluid shear stress, and their shear responses are still not well understood. Here, we used a multiplex microfluidic platform to systematically investigate the dose-time shear responses on hPSC-EC morphology and arterial-venous phenotypes over a range of magnitudes coincidental with physiological levels of embryonic and adult vasculatures. The device comprised of six parallel cell culture chambers that were individually linked to flow-setting resistance channels, allowing us to simultaneously apply shear stress ranging from 0.4 to 15 dyne/cm 2 . We found that hPSC-ECs required up to 40 hr of shear exposure to elicit a stable phenotypic change. Cell alignment was visible at shear stress <1 dyne/cm 2 , which was independent of shear stress magnitude and duration of exposure. We discovered that the arterial markers NOTCH1 and EphrinB2 exhibited a dose-dependent increase in a similar manner beyond a threshold level of 3.8 dyne/cm 2 , whereas the venous markers COUP-TFII and EphB4 expression remained relatively constant across different magnitudes. These findings indicated that hPSC-ECs were sensitive to relatively low magnitudes of shear stress, and a critical level of ~4 dyne/cm 2 was sufficient to preferentially enhance their maturation into an arterial phenotype for future vascular tissue engineering applications.


Assuntos
Diferenciação Celular , Células Endoteliais/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Resistência ao Cisalhamento , Linhagem Celular , Células Endoteliais/citologia , Efrina-B2/biossíntese , Células-Tronco Embrionárias Humanas/citologia , Humanos , Receptor EphB4/biossíntese , Receptor Notch1/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...