Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 12: 813082, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34956244

RESUMO

Siglecs, a family of receptor-like lectins, recognize glycoproteins and/or glycolipids containing sialic acid in the extracellular space and transduce intracellular signaling. Recently, researchers uncovered significant contributions of Siglecs in cancer immunity, renewing interest in this family of proteins. Previous extensive studies have defined how Siglecs recognize glycan epitopes (glycotopes). Nevertheless, the biological role of these glycotopes has not been fully evaluated. Recent studies using live cells have begun unraveling the constituents of Siglec ligands. These studies demonstrated that glycoprotein scaffolds (counter-receptors) displaying glycotopes are sometimes just as important as the glycotope itself. These new insights may guide future efforts to develop therapeutic agents to target the Siglec - ligand axis.


Assuntos
Técnicas de Química Analítica/métodos , Técnicas de Química Analítica/tendências , Cromatografia de Afinidade/métodos , Cromatografia de Afinidade/tendências , Ligantes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Humanos
2.
Anal Chem ; 93(13): 5556-5561, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33764058

RESUMO

Lateral flow assay (LFA) has been a valuable diagnostic tool in many important fields where rapid, simple, and on-site detection is required, for applications such as pregnancy tests and infectious disease prevention. Currently, two types of LFAs are available: lateral flow immunoassay (LFIA) and nucleic acid lateral flow assay (NALFA). Both are generally used for the testing of proteins and nucleic acids. However, enzyme activities and small molecules without the corresponding binding partner cannot be detected by the existing LFAs. In this paper, we introduce a LFA approach termed affinity-switchable lateral flow assay (ASLFA) to overcome the limitations. The detection principle is based on the switchable binding between the affinity-switchable biotin (ASB) probe and avidin protein. In the presence of the target molecule, the activated ASB probe would be captured by the avidin, thereby leaving a distinct test line on the membrane. The ASLFA concept was demonstrated by testing the F ion, NADH cofactor, and nitroreductase activity. Thus, this general ASLFA can be used for the rapid detection of molecules that cannot be accessed by the classical LFAs.


Assuntos
Bioensaio , Ácidos Nucleicos , Biotina , Imunoensaio
3.
Anal Chem ; 92(23): 15463-15471, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33179902

RESUMO

Currently most fluorogenic probes are developed for the analysis of enzymes, where a bond breaking or rearrangement reaction is required to transform a nonfluorescent enzymatic substrate into a fluorescent product. However, this approach cannot be used for proteins that do not possess enzymatic activities. In this article, we show that fluorogenic probes with a self-immolative difluorophenyl ester linker can mimic the bond disassembly processes of fluorogenic enzyme substrates for the rapid analysis of nonenzymatic proteins. Although numerous self-immolative reagents have shown promising applications in sensors, drug delivery systems, and material chemistry, all of them are triggered by either enzymes or small reactive molecules. In our strategy, the probe binds to the protein via a specific protein-ligand interaction, inducing a chemical reaction between the self-immolative linker and an amino acid of the protein, thereby triggering a cascade reaction that leads to the activation and release of the fluorogenic reporter. In contrast, a phenyl ester linker without the difluoro substituent cannot be triggered to release the fluorogenic reporter. With this probe design, live-cell imaging of extracellular and intracellular endogenous tumor marker proteins can be achieved with high selectivity and sensitivity.


Assuntos
Ésteres/química , Corantes Fluorescentes/química , Hidrocarbonetos Fluorados/química , Proteínas/análise , Proteínas/química , Limite de Detecção
4.
Chembiochem ; 19(24): 2584-2590, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30352141

RESUMO

The ability to detect and image secreted peroxynitrite (ONOO- ) along the extracellular surface of a single cell is biologically significant, as ONOO- generally exerts its function for host defense and signal transductions at the plasma membrane. However, as a result of the short lifetime and fast diffusion rate of small ONOO- , precise determination of the ONOO- level at the cell surface remains a challenging task. In this paper, the use of a membrane-anchored streptavidin-biotin-controlled binding probe (CBP), ONOO-CBP, to determine quantitatively the ONOO- level at the cell surface and to investigate the effect of different stimulants on the production of ONOO- along the plasma membrane of macrophages is reported. Our results revealed that the combination of NO synthase (iNOS) and NADPH oxidase (NOX) activators was highly effective in inducing ONOO- secretion, achieving more than a 25-fold increase in ONOO- relative to untreated cells. After 1 h of phorbol-12-myristate-13-acetate (PMA) stimulation, the amount of ONOO- secreted by RAW264.7 macrophages was similar to the condition treated with 25 µm 3-morpholinosydnonimine hydrochloride (SIN-1), which was estimated to release about 20 µm of ONOO- into Dulbecco's modified Eagle's medium (DMEM) in 1 h. This novel approach should open up new opportunities to image various reactive oxygen and nitrogen species secreted at the plasma membrane that cannot be simply achieved by conventional analytical methods.


Assuntos
Biotina/química , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Ácido Peroxinitroso/análise , Estreptavidina/química , Animais , Carbocianinas/química , Ativadores de Enzimas/farmacologia , Expressão Gênica/efeitos dos fármacos , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Molsidomina/análogos & derivados , Molsidomina/farmacologia , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Ácido Peroxinitroso/química , Ácido Peroxinitroso/metabolismo , Fosfatidilinositol 4,5-Difosfato/farmacologia , Células RAW 264.7 , Acetato de Tetradecanoilforbol/farmacologia
5.
Chem Sci ; 9(3): 770-776, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29629147

RESUMO

Target-activated chemical probes are important tools in basic biological research and medical diagnosis for monitoring enzyme activities and reactive small molecules. Based on the fluorescence turn-on mechanism, they can be divided into two classes: dye-based fluorescent probes and caged-luciferin. In this paper, we introduce a new type of chemical probe in which the fluorescence turn-on is based on controlled streptavidin-biotin binding. Compared to conventional probes, the streptavidin-biotin controlled binding probe has several advantages, such as minimal background at its "OFF" state, multiple signal amplification steps, and unlimited selection of the optimal dyes for detection. To expand the scope, a new synthetic method was developed, through which a wider range of analyte recognition groups can be easily introduced to construct the binding probe. This probe design was successfully applied to image and study secreted peroxynitrite (ONOO-) at the cell surface of macrophages where information on ONOO- is difficult to obtain. As the signals are generated upon the binding of streptavidin to the biotin probe, this highly versatile design can not only be used in fluorescence detection but can also be applied in various other detection modes, such as electrochemical and enzyme-amplified luminescence detection.

6.
Bioconjug Chem ; 28(11): 2895-2902, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-29064672

RESUMO

Although many protein labeling probes have been developed to elucidate the trafficking and turnover processes of cell surface proteins, real-time tracking of intracellular proteins remains a challenging task. Herein, we describe a new design to construct a cell-permeable, photostable, and far-red fluorescent turn-on probe to enable no-wash, organelle-specific, and long-term visualization of intracellular SNAP-tagged proteins in living cells. When the probe was used in dual-color pulse chase labeling experiments to differentiate between preLamin and mature Lamin, our results reveal that the shape of mature Lamin can be altered by the newly synthesized preLamin and that this alteration is progressive, cumulative, and due to a concentration-dependent dominant-negative effect of preLamin. We believe that this probe can also be applied to other intracellular proteins whose cellular localization and synthesis changes dynamically in response to external stimuli.


Assuntos
Corantes Fluorescentes/química , Laminas/análise , Corantes Fluorescentes/metabolismo , Humanos , Laminas/metabolismo , Células MCF-7 , Membrana Nuclear/química , Membrana Nuclear/metabolismo , Imagem Óptica/métodos , Processamento de Proteína Pós-Traducional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...