Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 25(2): 176-189, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35293417

RESUMO

Brown carbon (BrC) is known to have important impacts on atmospheric chemistry and climate. Phenolic compounds are a prominent class of BrC precursors that are emitted in large quantities from biomass burning and fossil fuel combustion. Inorganic nitrate is a ubiquitous component of atmospheric aqueous phases such as cloudwater, fog, and aqueous aerosols. The photolysis of inorganic nitrate can lead to BrC formation via the photonitration of phenolic compounds in the aqueous phase. However, the acidity of the atmospheric aqueous phase adds complexity to these photonitration processes and needs to be considered when investigating BrC formation from the nitrate-mediated photooxidation of phenolic compounds. In this study, we investigated the influence of pH on the formation and evolution of BrC from the aqueous-phase photooxidation of guaiacol, catechol, 5-nitroguaiacol, and 4-nitrocatechol initiated by inorganic nitrate photolysis. The reaction rates, BrC composition and quantities were found to depend on the aqueous phase pH. Guaiacol, catechol, and 5-nitroguaiacol reacted substantially faster at lower pH. In contrast, 4-nitrocatechol reacted at slower rates at lower pH. For all four phenolic compounds, the initial stages of photooxidation resulted in an increase in light absorption (i.e., photo-enhancement) in the near-UV and visible range due to the formation of light absorbing products formed via the addition of nitro and/or hydroxyl groups to the phenolic compound. Greater photo-enhancement was observed at lower pH during the nitrate-mediated photooxidation of guaiacol and catechol. In contrast, greater photo-enhancement was observed at higher pH during the nitrate-mediated photooxidation of 5-nitroguaiacol and 4-nitrocatechol. This indicated that the effect that the aqueous phase pH has on the composition and yields of BrC formed is not universal, and will depend on the initial phenolic compound. These results provide new insights into how the atmospheric aqueous phase acidity influences the reactivities of different phenolic compounds and BrC formation/evolution during photooxidation initiated by inorganic nitrate photolysis, which will have significant implications for how the atmospheric fates of phenolic compounds and BrC formation/evolution are modeled for areas with high levels of inorganic nitrate.


Assuntos
Poluentes Atmosféricos , Nitratos , Carbono/química , Compostos Orgânicos , Guaiacol , Aerossóis , Água , Concentração de Íons de Hidrogênio
2.
Environ Res ; 215(Pt 1): 114323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115419

RESUMO

Dependency on plastic commodities has led to a recurrent increase in their global production every year. Conventionally, plastic products are derived from fossil fuels, leading to severe environmental concerns. The recent coronavirus disease 2019 pandemic has triggered an increase in medical waste. Conversely, it has disrupted the supply chain of personal protective equipment (PPE). Valorisation of food waste was performed to cultivate C. necator for fermentative production of biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The increase in biomass, PHBV yield and molar 3-hydroxy valerate (3HV) content was estimated after feeding volatile fatty acids. The fed-batch fermentation strategy reported in this study produced 15.65 ± 0.14 g/L of biomass with 5.32 g/L of PHBV with 50% molar 3HV content. This is a crucial finding, as molar concentration of 3HV can be modulated to suit the specification of biopolymer (film or fabric). The strategy applied in this study addresses the issue of global food waste burden and subsequently generates biopolymer PHBV, turning waste to wealth.


Assuntos
COVID-19 , Cupriavidus necator , Resíduos de Serviços de Saúde , Eliminação de Resíduos , Biopolímeros , Cupriavidus necator/metabolismo , Fermentação , Alimentos , Combustíveis Fósseis , Humanos , Hidroxibutiratos , Ácidos Pentanoicos , Plásticos , Poliésteres , Valeratos
3.
Sci Total Environ ; 839: 156145, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35613640

RESUMO

With the widespread use of sunscreen and other personal care products, organic ultraviolet filters (OUVFs) have become widely detected in the aquatic environment. Direct and indirect photolysis are important transformation pathways of OUVFs in aquatic environments, so their transformation products (TPs) are also chemicals of concern. Butyl methoxydibenzoylmethane (BMDBM) is one of the most commonly used OUVFs worldwide due to its ability to absorb ultraviolet light across a wide range of wavelengths, and it is ubiquitously detected in aquatic environments. In this study, we investigated the photodegradation of BMDBM through direct photolysis and hydroxyl radical (•OH) photooxidation. TPs were identified using ultrahigh performance liquid chromatography-high resolution mass spectrometry, and reaction mechanisms were proposed. Our results showed that the photodegradation rates for both enol and keto tautomer forms of BMDBM during direct photolysis and •OH photooxidation were similar. The formation of TPs resulted from α-cleavage and decarbonylation reactions involving the keto form of BMDBM. Comparisons of the kinetic data and TPs revealed that the direct photolysis mechanism was a significant sink for BMDBM even during •OH photooxidation. Evaluations of environmental properties based on the predicted physicochemical properties of BMDBM and TPs suggests that some of the TPs will have higher mobility than BMDBM. The quantitative structure-activity relationship (QSAR) approach was used to evaluate the ecotoxicity of BMDBM and the identified TPs. Most TPs were found to be less ecotoxic than BMDBM; however, TPs that had a diphenyl ring structure could be more ecotoxic than BMDBM. Overall, this study provides new insights into the photochemical behavior and ecotoxicity of BMDBM and its TPs, which are important for assessing the fate, persistence, accumulation, and adverse impacts of these compounds in aquatic environments.


Assuntos
Raios Ultravioleta , Poluentes Químicos da Água , Radical Hidroxila , Fotoquímica , Fotólise , Protetores Solares/química , Poluentes Químicos da Água/análise
4.
J Hazard Mater ; 423(Pt B): 127146, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34536849

RESUMO

Liquid crystal monomers (LCMs) have been proposed as a class of emerging organic pollutants, which were recently detected in indoor dust and sediment samples collected near electronic devices recycling facilities. However, there is a knowledge gap for analytical method, occurrence, and distribution of LCMs in aqueous sample. Herein, a robust method was developed to determine 38 target LCMs in landfill leachate. A combined ultrasonic enhanced liquid-liquid extraction, saponification and silica/florisil packed column purification method achieved recoveries of 76.9~127.1%, 84.5~114.6% and 81.3~104.6% at spiking levels of 2 ng, 10 ng and 50 ng in leachate, respectively. The developed method was validated through determination of target LCMs in leachate samples collected from municipal landfills in Hong Kong (HK) and Shenzhen (SZ), China. There were 23 and 20 LCMs detected in the HK (ΣLCMs=1120 ng/L) and SZ (ΣLCMs=409 ng/L) sample, respectively, with 6 LCMs newly detected in the environment. This study provided the first evidence suggesting that landfill leachate might be a potential sink of LCMs emitted from e-waste. Future study is urged to investigate the potential migration of LCMs from landfill leachate as a point source, and their occurrence, distribution, fate, and ecotoxicological risk in aquatic environments on regional and global scales.


Assuntos
Resíduo Eletrônico , Poluentes Ambientais , Cristais Líquidos , Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 423(Pt A): 127023, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34482075

RESUMO

Due to the recent boom in urbanisation, economy, and global population, the amount of waste generated worldwide has increased tremendously. The World Bank estimates that global waste generation is expected to increase 70% by 2050. Disposal of waste is already a major concern as it poses risks to the environment, human health, and economy. To tackle this issue and maximise potential environmental, economic, and social benefits, waste valorisation - a value-adding process for waste materials - has emerged as a sustainable and efficient strategy. The major objective of waste valorisation is to transit to a circular economy and maximally alleviate hazardous impacts of waste. This review conducts bibliometric analysis to construct a co-occurrence network of research themes related to management of five major waste streams (i.e., food, agricultural, textile, plastics, and electronics). Modern valorisation technologies and their efficiencies are highlighted. Moreover, insights into improvement of waste valorisation technologies are presented in terms of sustainable environmental, social, and economic performances. This review summarises highlighting factors that impede widespread adoption of waste valorisation, such as technology lock-in, optimisation for local conditions, unfavourable regulations, and low investments, with the aim of devising solutions that explore practical, feasible, and sustainable means of waste valorisation.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Alimentos , Humanos , Plásticos , Resíduos
6.
Bioresour Technol ; 346: 126419, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34838966

RESUMO

Aromatic compounds are important fuels and key chemical precursors for organic synthesis, however the current aromatics market are mainly relying on fossil resources which will eventually contribute to carbon emissions. Lignin has been recognized as a drop-in substitution to conventional aromatics, with its values gradually realized after tremendous research efforts in the recent five years. To facilitate the development of a possible lignin economics, this study overviewed the recent advances of various biorefinery techniques and the remaining challenging for lignin valorization. Starting with recent discovery of unexplored lignin structures, the potential functions of lignin related chemical structures were emphasized. The important breakthrough of lignin-first pretreatment, catalytic lignin depolymerization, and the high value products with possible benchmark with modern aromatics were reviewed with possible future targets. Possible retrofit of conventional petroleum refinery for lignin products were also introduced and hopefully paving a way to progressively migrate the industry towards carbon neutrality.


Assuntos
Benchmarking , Lignina , Carbono , Catálise , Fósseis
7.
Environ Sci Technol ; 55(5): 3240-3249, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33577303

RESUMO

The manufacture of goods from oil, coal, or gas to everyday consumer products comprises in more or less all cases at least one catalytic step. Compared to conventional hydrothermal catalysis, electrocatalysis possesses the advantage of mild operational conditions and high selectivity, yet the potential energy savings and climate change mitigation have rarely been assessed. This study conducted a life cycle assessment (LCA) for the electrocatalytic oxidation of crude glycerol to produce lactic acid, one of the most common platform chemicals. The LCA results demonstrated a 31% reduction in global warming potential (GWP) compared to the benchmark (bio- and chemocatalytic) processes. Additionally, electrocatalysis yielded a synergetic potential to mitigate climate change depending on the scenario. For example, electrocatalysis combined with a low-carbon-intensity grid can reduce GWP by 57% if the process yields lactic acid and lignocellulosic biofuel as compared to a conventional fossil-based system with functionally equivalent products. This illustrates the potential of electrocatalysis as an important contributor to climate change mitigation across multiple industries. A technoeconomic analysis (TEA) for electrocatalytic lactic acid production indicated considerable challenges in economic feasibility due to the significant upfront capital cost. This challenge could be largely addressed by enabling dual redox processing to produce separate streams of renewable chemicals and biofuels simultaneously.


Assuntos
Biocombustíveis , Mudança Climática , Catálise , Estudos de Viabilidade , Aquecimento Global
8.
ChemSusChem ; 13(17): 4214-4237, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32460408

RESUMO

Lignin valorization is essential for biorefineries to produce fuels and chemicals for a sustainable future. Today's biorefineries pursue profitable value propositions for cellulose and hemicellulose; however, lignin is typically used mainly for its thermal energy value. To enhance the profit potential for biorefineries, lignin valorization would be a necessary practice. Lignin valorization is greatly advantaged when biomass carbon is retained in the fuel and chemical products and when energy quality is enhanced by electrochemical upgrading. Though lignin upgrading and valorization are very desirable in principle, many barriers involved in lignin pretreatment, extraction, and depolymerization must be overcome to unlock its full potential. This Review addresses the electrochemical transformation of various lignins with the aim of gaining a better understanding of many of the barriers that currently exist in such technologies. These studies give insight into electrochemical lignin depolymerization and upgrading to value-added commodities with the end goal of achieving a global low-carbon circular economy.

9.
World J Emerg Med ; 9(1): 13-19, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29290890

RESUMO

BACKGROUND: Intravenous fluid (IVF) is commonly used in acute clinical management. This study aimed to review the choice and primary considerations in IVF prescriptions and to evaluate the adequacy of guidelines and trainings on it in the New Territories West Cluster (NTWC) of Hong Kong. METHODS: This is a descriptive study based on data collected from an online survey. Data were processed by SPSS for statistical analysis. This study focused on a general description and doctor-nurse between group comparison. Participants were asked the choice of IVF for nine acute clinical scenarios and provide reason. A 1-10 scale was used to assess the sufficiency of guideline, training and information, and time for revision on IVF prescription. RESULTS: 0.9% sodium chloride was the most familiar IVF (36%), followed by 5% Dextrose solution (26%). In the nine scenarios, the most chosen IVF was 0.9% sodium chloride (37%-61%). There was significant difference in the choice of IVF between doctors and nurses in 7 cases. The second most chosen IVF for doctors was Plasma-Lyte A while that for nurses was Gelofusine. Departmental practice was the most chosen reason to account for the prescription. The adequacy of guideline, information and training, and time for revision was rated 5. Doctors had significantly more time at work than nurses to update knowledge in IVF prescription (5.41 versus 4.57). CONCLUSION: 0.9% sodium chloride was mostly chosen. The choice of IVF was mainly based on departmental practice. Adequacy of guideline, information and training, and time for revision on IVF prescription were average, indicating significant training deficit.

10.
Angew Chem Int Ed Engl ; 56(32): 9561-9565, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28621829

RESUMO

The aerobic oxidative cleavage of 1,2-diols using a heterogeneous catalyst only based on earth-abundant metals manganese and sodium is reported for the first time. This reusable catalyst cleaves a variety of substrates into aldehydes or ketones with high selectivity. The reaction requires small catalytic loadings and is performed under mild conditions using ambient pressure O2 or air as the oxidant while producing water as the only by-product. Mechanistic investigations reveal a monodentate, two-electron oxidative fragmentation process involving a MnIV species. The eco-friendly, innocuous catalyst is compatible with a wide range of functional groups and conditions, making it highly competitive with classical reagents, such as periodic acid or lead tetraacetate, as a preferred method for activated 1,2-diols.

11.
Bioresour Technol ; 233: 216-226, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28282608

RESUMO

A copper-catalyzed depolymerization strategy was employed to investigate the impact of lignin structure on the distribution of hydroprocessing products. Specifically, lignin was extracted from beech wood and miscanthus grass. The extracted lignins, as well as a commercial lignin (P1000), were then fractionated using ethyl acetate to provide three different portions for each source of lignin [total of 9 fractions]. Each fraction was structurally characterized and treated with a copper-doped porous metal oxide (Cu-PMO) catalyst under 4MPa H2 and at 180°C for 12h. The reaction conditions provided notable yields of oil for each fraction of lignin. Analysis of the oils indicated phenolic monomers of commercial interest. The structure of these monomers and the yield of monomer-containing oil was dependent on the origin of the lignin. Our results indicate that hydroprocessing with a Cu-PMO catalyst can selectively provide monomers of commercial interest by careful choice of lignin starting material.


Assuntos
Cobre/química , Lignina/química , Catálise , Óxidos , Madeira/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...