Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(47): 10561-10569, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37976045

RESUMO

The identification of thermodynamic descriptors of catalytic performance is essential for the rational design of heterogeneous catalysts. Here, we investigate how spillover energy, a descriptor quantifying whether intermediates are more stable at the dopant or host metal sites, can be used to design single-atom alloys (SAAs) for formic acid dehydrogenation. Using theoretical calculations, we identify NiCu as a SAA with favorable spillover energy and demonstrate that formate intermediates produced after the initial O-H activation are more stable at Ni sites where rate-determining C-H activation occurs. Surface science experiments demonstrated that NiCu(111) SAAs are more reactive than Cu(111) while they still follow the formate reaction pathway. However, reactor studies of silica-supported NiCu SAA nanoparticles showed only a modest improvement over Cu resulting from surface coverage effects. Overall, this study demonstrates the potential of engineering SAAs using spillover energy as a design parameter and highlights the importance of adsorbate-adsorbate interactions under steady-state operation.

2.
ACS Macro Lett ; 8(10): 1280-1284, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35651168

RESUMO

We observe that the Tg confinement effect of polymer films can saturate with polymer-substrate interaction. Thickness dependences of the glass transition temperature, Tg(h0), of random copolymer films of 4-tert-butylstyrene (TBS) and 4-acetoxystyrene (AS) supported by silica (SiOx) were measured for different TBS concentrations, XTBS. For 0 ≤ XTBS ≤ 0.47, Tg(h0) displays identical enhancements, independent of XTBS. For XTBS > ∼0.66; however, Tg(h0) decreases steadily with XTBS. The XTBS > 0.66 result is in keeping with expectations that TBS interacts less strongly with SiOx than AS does, and weaker polymer-substrate interaction renders greater dominance of the air surface over substrate surface on Tg, and thereby Tg reduction. We propose that saturation in Tg(h0) found for XTBS ≤ 0.47 is caused by the maximization in polymer-substrate-specific bond formation. Further experiments and a calculation support this proposition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...