Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Neurobiol ; 43(7): 3417-3433, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37517069

RESUMO

Repressor element-1 silencing transcription factor (REST) or also known as neuron-restrictive silencing factor (NRSF), is the key initiator of epigenetic neuronal gene-expression modification. Identification of a massive number of REST-targeted genes in the brain signifies its broad involvement in maintaining the functionality of the nervous system. Additionally, REST plays a crucial role in conferring neuroprotection to the neurons against various stressors or insults during injuries. At the cellular level, nuclear localisation of REST is a key determinant for the functional transcriptional regulation of REST towards its target genes. Emerging studies reveal the implication of REST nuclear mislocalisation or dysregulation in several neurological diseases. The expression of REST varies depending on different types of neurological disorders, which has created challenges in the discovery of REST-targeted interventions. Hence, this review presents a comprehensive summary on the physiological roles of REST throughout brain development and its implications in neurodegenerative and neurodevelopmental disorders, brain tumours and cerebrovascular diseases. This review offers valuable insights to the development of potential therapeutic approaches targeting REST to improve pathologies in the brain. The important roles of REST as a key player in the nervous system development, and its implications in several neurological diseases.


Assuntos
Neoplasias Encefálicas , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Proteínas Repressoras/metabolismo , Regulação da Expressão Gênica , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia
2.
IBRO Neurosci Rep ; 14: 407-418, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37388495

RESUMO

Bipolar disorder (BD) is one of the major psychiatric diseases in which the impairment of mitochondrial functions has been closely connected or associated with the disease pathologies. Different lines of evidence of the close connection between mitochondria dysfunction and BD were discussed with a particular focus on (1) dysregulation of energy metabolism, (2) effect of genetic variants, (3) oxidative stress, cell death and apoptosis, (4) dysregulated calcium homeostasis and electrophysiology, and (5) current as well as potential treatments targeting at restoring mitochondrial functions. Currently, pharmacological interventions generally provide limited efficacy in preventing relapses or recovery from mania or depression episodes. Thus, understanding mitochondrial pathology in BD will lead to novel agents targeting mitochondrial dysfunction and formulating new effective therapy for BD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...