Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 7(6): 4017-4028, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38788153

RESUMO

Microalgae show great promise for producing valuable molecules like biofuels, but their large-scale production faces challenges, with harvesting being particularly expensive due to their low concentration in water, necessitating extensive treatment. While methods such as centrifugation and filtration have been proposed, their efficiency and cost-effectiveness are limited. Flotation, involving air-bubbles lifting microalgae to the surface, offers a viable alternative, yet the repulsive interaction between bubbles and cells can hinder its effectiveness. Previous research from our group proposed using an amphiphilic chitosan derivative, polyoctyl chitosan (PO-chitosan), to functionalize bubbles used in dissolved air flotation (DAF). Molecular-scale studies performed using atomic force microscopy (AFM) revealed that PO-chitosan's efficiency correlates with cell surface properties, particularly hydrophobic ones, raising the question of whether this molecule can in fact be used more generally to harvest different microalgae. Evaluating this, we used a different strain of Chlorella vulgaris and first characterized its surface properties using AFM. Results showed that cells were hydrophilic but could still interact with PO-chitosan on bubble surfaces through a different mechanism based on specific interactions. Although force levels were low, flotation resulted in 84% separation, which could be explained by the presence of AOM (algal organic matter) that also interacts with functionalized bubbles, enhancing the overall separation. Finally, flocculation was also shown to be efficient and pH-independent, demonstrating the potential of PO-chitosan for harvesting microalgae with different cell surface properties and thus for further sustainable large-scale applications.


Assuntos
Materiais Biocompatíveis , Quitosana , Floculação , Teste de Materiais , Microalgas , Propriedades de Superfície , Quitosana/química , Microalgas/química , Microalgas/metabolismo , Microalgas/citologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Tamanho da Partícula , Microscopia de Força Atômica , Interações Hidrofóbicas e Hidrofílicas , Chlorella vulgaris/metabolismo , Chlorella vulgaris/química , Tensoativos/química
2.
Bioresour Technol ; 220: 464-470, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27611030

RESUMO

Flocculation holds great potential as a low-cost harvesting method for microalgae biomass production. Three flocculation methods (ferric chloride, chitosan, and alkaline flocculation) were compared in this study for the harvesting of 9 different freshwater and marine microalgae and one cyanobacterium species. Ferric chloride resulted in a separation efficiency greater than 90% with a concentration factor (CF) higher than 10 for all species. Chitosan flocculation worked generally very well for freshwater microalgae, but not for marine species. Alkaline flocculation was most efficient for harvesting of Nannochloropsis, Chlamydomonas and Chlorella sp. The concentration factor was highly variable between microalgae species. Generally, minimum flocculant dosages were highly variable across species, which shows that flocculation may be a good harvesting method for some species but not for others. This study shows that microalgae and cyanobacteria species should not be selected solely based on their productivity but also on their potential for low-cost separation.


Assuntos
Álcalis/química , Quitosana/química , Cloretos/química , Cianobactérias/química , Compostos Férricos/química , Microalgas/química , Biomassa , Floculação , Microalgas/crescimento & desenvolvimento , Especificidade da Espécie
3.
Nanoscale ; 7(34): 14413-21, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26248574

RESUMO

Cellulose nanocrystals were grafted with imidazole functionalities up to DS 0.06 using a one-pot functionalization strategy. The resulting nanocrystals were shown to have a pH responsive surface charge which was found to be positive below pH 6 and negative above pH 7. These imidazolyl cellulose nanocrystals were tested for flocculation of Chlorella vulgaris using CO2 to induce flocculation. Up to 90% flocculation efficiency was achieved with 200 mg L(-1) dose. Furthermore, the modified cellulose nanocrystals showed good compatibility with the microalgae during cultivation, giving potential for the production of reversible flocculation systems.


Assuntos
Dióxido de Carbono/química , Celulose/química , Chlorella vulgaris/metabolismo , Nanopartículas/química , Floculação , Concentração de Íons de Hidrogênio , Espectroscopia Fotoeletrônica , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...