Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 193(3): 731-748, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32737568

RESUMO

Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We investigated how plant diversity affects gross N mineralization, microbial ammonium (NH4+) consumption and gross inorganic N immobilization in grasslands via isotopic pool dilution. The field experiment included 74 plots with 1-16 plant species and 1-4 plant functional groups (legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and microbial biomass, and C and N concentrations in soil, microbial biomass, roots and shoots. Structural equation modeling (SEM) showed that increasing plant species richness significantly decreased gross N mineralization and microbial NH4+ consumption rates via increased root C:N ratios. Root C:N ratios increased because of the replacement of legumes (low C:N ratios) by small herbs (high C:N ratios) and an increasing shoot height, which was positively related with root C:N ratios, with increasing species richness. However, in our SEM remained an unexplained direct negative path from species richness to both N turnover rates. The presence of legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic N immobilization rates likely because of improved N supply by N2 fixation. The positive effect of small herbs on microbial NH4+ consumption and gross inorganic N immobilization could be attributed to their increased rhizodeposition, stimulating microbial growth. Our results demonstrate that increasing root C:N ratios with increasing species richness slow down the N cycle but also that there must be additional, still unidentified processes behind the species richness effect potentially including changed microbial community composition.


Assuntos
Compostos de Amônio , Nitrogênio , Biodiversidade , Biomassa , Pradaria , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...