Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (153)2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31789308

RESUMO

Chimeric antigen receptor (CAR) T-cell therapy for cancer has achieved significant clinical benefit for resistant and refractory hematological malignancies such as childhood acute lymphocytic leukemia. Efforts are currently underway to extend this promising therapy to solid tumors in addition to other hematological cancers. Here, we describe the development and production of potent CAR T cells targeting antigens with unique or preferential expression on solid and liquid tumor cells. The in vitro potency of these CAR T cells is then evaluated in real-time using the highly sensitive impedance-based xCELLigence assay. Specifically, the impact of different costimulatory signaling domains, such as glucocorticoid-induced tumor necrosis factor receptor (TNFR)-related protein (GITR), on the in vitro potency of CAR T cells is examined. This report includes protocols for: generating CAR T cells for preclinical studies using lentiviral gene transduction, expanding CAR T cells, validating CAR expression, and running and analyzing xCELLigence potency assays.


Assuntos
Apoptose , Linfoma/patologia , Neoplasias Pancreáticas/patologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/patologia , Humanos , Linfoma/imunologia , Linfoma/metabolismo , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Células Tumorais Cultivadas
2.
DNA Repair (Amst) ; 74: 80-90, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30583959

RESUMO

The DNA double strand breaks (DSBs) created during meiotic recombination and during some types of chemotherapy contain protein covalently attached to their 5' termini. Removal of the end-blocking protein is a prerequisite to DSB processing by non-homologous end-joining or homologous recombination. One mechanism for removing the protein involves CtIP-stimulated Mre11-catalyzed nicking of the protein-linked strand distal to the DSB terminus, releasing the end-blocking protein while it remains covalently attached to an oligonucleotide. Much of what is known about this repair process has recently been deciphered through in vitro reconstitution studies. We present here a novel model system based on adenovirus (Ad), which contains the Ad terminal protein covalently linked to the 5' terminus of its dsDNA genome, for studying the repair of 5' protein-linked DSBs in vivo. It was previously shown that the genome of Ad mutants that lack early region 4 (E4) can be joined into concatemers in vivo, suggesting that the Ad terminal protein had been removed from the genome termini prior to ligation. Here we show that during infection with the E4-deleted Ad mutant dl1004, the Ad terminal protein is removed in a manner that recapitulates removal of end-blocking proteins from cellular DSBs. In addition to displaying a dependence on CtIP, and Mre11 acting as the endonuclease, the protein-linked oligonucleotides that are released from the viral genome are similar in size to the oligos that remain attached to Spo11 and Top2 after they are removed from the 5' termini of DSBs during meiotic recombination and etoposide chemotherapy, respectively. The single nucleotide resolution that is possible with this assay, combined with the single sequence context in which the lesion is presented, make it a useful tool for further refining our mechanistic understanding of how blocking proteins are removed from the 5' termini of DSBs.


Assuntos
Adenoviridae/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Genoma Viral/genética , Proteínas/metabolismo , Proteína BRCA1/metabolismo , Proteínas de Transporte/metabolismo , Endodesoxirribonucleases , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Proteínas Nucleares/metabolismo
3.
PLoS One ; 13(3): e0193498, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29499048

RESUMO

A growing understanding of the molecular interactions between immune effector cells and target tumor cells, coupled with refined gene therapy approaches, are giving rise to novel cancer immunotherapeutics with remarkable efficacy in the clinic against both solid and liquid tumors. While immunotherapy holds tremendous promise for treatment of certain cancers, significant challenges remain in the clinical translation to many other types of cancers and also in minimizing adverse effects. Therefore, there is an urgent need for functional potency assays, in vitro and in vivo, that could model the complex interaction of immune cells with tumor cells and can be used to rapidly test the efficacy of different immunotherapy approaches, whether it is small molecule, biologics, cell therapies or combinations thereof. Herein we report the development of an xCELLigence real-time cytolytic in vitro potency assay that uses cellular impedance to continuously monitor the viability of target tumor cells while they are being subjected to different types of treatments. Specialized microtiter plates containing integrated gold microelectrodes enable the number, size, and surface attachment strength of adherent target tumor cells to be selectively monitored within a heterogeneous mixture that includes effector cells, antibodies, small molecules, etc. Through surface-tethering approach, the killing of liquid cancers can also be monitored. Using NK92 effector cells as example, results from RTCA potency assay are very well correlated with end point data from image-based assays as well as flow cytometry. Several effector cells, i.e., PBMC, NK, CAR-T were tested and validated as well as biological molecules such as Bi-specific T cell Engagers (BiTEs) targeting the EpCAM protein expressed on tumor cells and blocking antibodies against the immune checkpoint inhibitor PD-1. Using the specifically designed xCELLigence immunotherapy software, quantitative parameters such as KT50 (the amount of time it takes to kill 50% of the target tumor cells) and % cytolysis are calculated and used for comparing the relative efficacy of different reagents. In summary, our results demonstrate the xCELLigence platform to be well suited for potency assays, providing quantitative assessment with high reproducibility and a greatly simplified work flow.


Assuntos
Técnicas Citológicas/métodos , Anticorpos/imunologia , Apoptose , Bioensaio , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial/metabolismo , Humanos , Imunoterapia , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Células MCF-7 , Receptor de Morte Celular Programada 1/imunologia
4.
FEBS Lett ; 584(17): 3682-95, 2010 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-20655309

RESUMO

Genomes are subject to constant threat by damaging agents that generate DNA double-strand breaks (DSBs). The ends of linear chromosomes need to be protected from DNA damage recognition and end-joining, and this is achieved through protein-DNA complexes known as telomeres. The Mre11-Rad50-Nbs1 (MRN) complex plays important roles in detection and signaling of DSBs, as well as the repair pathways of homologous recombination (HR) and non-homologous end-joining (NHEJ). In addition, MRN associates with telomeres and contributes to their maintenance. Here, we provide an overview of MRN functions at DSBs, and examine its roles in telomere maintenance and dysfunction.


Assuntos
Dano ao DNA/genética , Reparo do DNA/genética , Telômero/genética , Animais , Quebras de DNA de Cadeia Dupla , Genoma , Humanos , Camundongos , Modelos Animais , Mutação , Síndrome de Quebra de Nijmegen/genética , Deleção de Sequência/genética , Transdução de Sinais
5.
Biochemistry ; 46(17): 4962-76, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17407264

RESUMO

In addition to linking nicked/fragmented DNA molecules back into a contiguous duplex, DNA ligases also have the capacity to influence the accuracy of DNA repair pathways via their tolerance/intolerance of nicks containing mismatched base pairs. Although human DNA ligase I (Okazaki fragment processing) and the human DNA ligase III/XRCC1 complex (general DNA repair) have been shown to be relatively intolerant of nicks containing mismatched base pairs, the human DNA ligase IV/XRCC4 complex has not been studied in this regard. Ligase IV/XRCC4 is the sole DNA ligase involved in the repair of double strand breaks (DSBs) via the non-homologous end joining (NHEJ) pathway. During the repair of DSBs generated by chemical/physical damage as well as the repair of the programmed DSB intermediates of V(D)J recombination, there are scenarios where, at least conceptually, a capacity for ligating nicks containing mismatched base pairs would appear to be advantageous. Herein we examine whether ligase IV/XRCC4 can contribute a mismatched nick ligation activity to NHEJ. Toward this end, we (i) describe an E. coli-based coexpression system that provides relatively high yields of the ligase IV/XRCC4 complex, (ii) describe a unique rate-limiting step, which has bearing on how the complex is assayed, (iii) specifically analyze how XRCC4 influences ligase IV catalysis and substrate specificity, and (iv) probe the mismatch tolerance/intolerance of DNA ligase IV/XRCC4 via quantitative in vitro kinetic analyses. Analogous to most other DNA ligases, ligase IV/XRCC4 is shown to be fairly intolerant of nicks containing mismatched base pairs. These results are discussed in light of the biological roles of NHEJ.


Assuntos
DNA Ligases/química , Proteínas de Ligação a DNA/química , Sequência de Bases , DNA Ligase Dependente de ATP , Primers do DNA , Humanos
6.
Biochemistry ; 46(12): 3814-25, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17335287

RESUMO

The structural specificity that translesion DNA polymerases often show for a particular class of lesions suggests that the predominant criterion of selection during their evolution has been the capacity for lesion tolerance and that the error-proneness they display when copying undamaged templates may simply be a byproduct of this adaptation. Regardless of selection criteria/evolutionary history, at present both of these properties coexist in these enzymes, and both properties confer a fitness advantage. The repair polymerase, Pol X, encoded by the African swine fever virus (ASFV) is one of the most error-prone polymerases known, leading us to previously hypothesize that it may work in tandem with the exceptionally error-tolerant ASFV DNA ligase to effect viral mutagenesis. Here, for the first time, we test whether the error-proneness of Pol X is coupled with a capacity for lesion tolerance by examining its ability to utilize the types of damaged DNA and dNTP substrates that are expected to be relevant to ASFV. We (i) test Pol X's ability to both incorporate opposite to and extend from ubiquitous oxidative purine (7,8-dihydro-8-oxoguanine), oxidative pyrimidine (5,6-dihydroxy-5,6-dihydrothymine), and noncoding (AP site) lesions, in addition to 5,6-dihydrothymine, (ii) determine the catalytic efficiency and dNTP specificity of Pol X when catalyzing incorporation opposite to, and when extending from, 7,8-dihydro-8-oxoguanine in a template/primer context, and (iii) quantitate Pol X-catalyzed incorporation of the damaged nucleotide 8-oxo-dGTP opposite to undamaged templates in the context of both template/primer and a single-nucleotide gap. Our findings are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/química , Desoxirribonucleotídeos/química , Vírus da Febre Suína Africana/química , Catálise , DNA Ligases/química , DNA Ligases/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Desoxirribonucleotídeos/metabolismo , Evolução Molecular , Mutagênese
7.
Biochemistry ; 45(49): 14826-33, 2006 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-17144676

RESUMO

We previously demonstrated that the DNA repair system encoded by the African swine fever virus (ASFV) is both extremely error-prone during the single-nucleotide gap-filling step (catalyzed by ASFV DNA polymerase X) and extremely error-tolerant during the nick-sealing step (catalyzed by ASFV DNA ligase). On the basis of these findings we have suggested that at least some of the diversity known to exist among ASFV isolates may be a consequence of mutagenic DNA repair, wherein damaged nucleotides are replaced with undamaged but incorrect nucleotides by Pol X and the resultant mismatched nicks are sealed by ASFV DNA ligase. Recently, this hypothesis appeared to be discredited by Salas and co-workers [(2003) J. Mol. Biol. 326, 1403-1412], who reported the fidelity of Pol X to be, on average, 2 orders of magnitude higher than what we previously published. In an effort to address this discrepancy and provide a definitive conclusion about the fidelity of Pol X, herein we examine the fidelity of Pol X-catalyzed single-nucleotide gap-filling in both the steady state and the pre-steady state under a diverse array of assay conditions (varying pH and ionic strength) and within different DNA sequence contexts. These studies corroborate our previously published data (demonstrating the low fidelity of Pol X to be independent of assay condition/sequence context), do not reproduce the data of Salas et al., and therefore confirm Pol X to be one of the most error-prone polymerases known. These results are discussed in light of ASFV biology and the mutagenic DNA repair hypothesis described above.


Assuntos
Asfarviridae/enzimologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Asfarviridae/genética , Sequência de Bases , Reparo do DNA , Cinética , Dados de Sequência Molecular , Mutação , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Biochemistry ; 45(9): 2790-803, 2006 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-16503634

RESUMO

We recently demonstrated that African swine fever virus DNA polymerase X (Pol X) is extremely error-prone during single-nucleotide gap-filling and that the downstream ASFV DNA ligase seals 3' mismatched nicks with high efficiency. To further assess the credence of our hypothesis that these proteins may promote viral diversification by functioning within the context of an aberrant DNA repair pathway, herein we characterize the third protein expected to function in this system, a putative AP endonuclease (APE). Assays of the purified protein using oligonucleotide substrates unequivocally establish canonical APE activity, 3'-phosphatase and 3'-phosphodiesterase activities (in the context of a single-nucleotide gap), 3' --> 5' exonuclease activity (in the context of a nick), and nucleotide incision repair activity against 5,6-dihydrothymine. The 3' --> 5' exonuclease activity is shown to be highly dependent upon the identity of the nascent 3' base pair and to be inhibited when 2-deoxyribose-5-phosphate, rather than phosphate, constitutes the 5' moiety of the nick. ASFV APE retains activity when assayed in the presence of EDTA but is inactivated by incubation with 1,10-phenanthroline in the absence of a substrate, suggesting that it is an endonuclease IV homologue possessing intrinsic metal cofactors. The activities of ASFV APE, when considered alongside those of Pol X and ASFV DNA ligase, provide an enhanced understanding of (i) the types of damage that are likely to be sustained by the viral genome and (ii) the mechanisms by which the minimalist ASFV DNA repair pathway, consisting of just these three proteins, contributes to the fitness of the virus.


Assuntos
Vírus da Febre Suína Africana/metabolismo , Reparo do DNA , Desoxirribonuclease IV (Fago T4-Induzido)/farmacologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Sistema Livre de Células , Células Cultivadas , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/fisiologia , Desoxirribonuclease IV (Fago T4-Induzido)/genética , Desoxirribonuclease IV (Fago T4-Induzido)/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Genoma Viral/fisiologia , Marcação In Situ das Extremidades Cortadas , Metais/metabolismo , Metais/farmacologia , Modelos Biológicos , Dados de Sequência Molecular , Peso Molecular , Homologia de Sequência
10.
Biochemistry ; 44(23): 8408-17, 2005 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-15938630

RESUMO

Our recent demonstration that DNA polymerase X (Pol X), the DNA repair polymerase encoded by the African swine fever virus (ASFV), is extremely error prone during single-nucleotide gap filling led us to hypothesize that it might contribute to genetic variability in ASFV. For the infidelity of Pol X to be relevant, however, the DNA ligase working downstream of it would need to be capable of sealing nicks containing 3'-OH mismatches. We therefore examined the nick ligation capabilities of the ASFV-encoded DNA ligase and here report the first complete 3' fidelity analysis, employing catalytic parameters, for any DNA ligase. The catalytic efficiency of nick sealing by both ASFV DNA ligase and bacteriophage T4 DNA ligase was determined in the steady state for substrates containing all 16 possible matched and mismatched base pair combinations at the 3' side of a nick. Our results indicate that ASFV DNA ligase is the lowest-fidelity DNA ligase ever reported, capable of ligating a 3' C:T mismatched nick (where C and T are the templating and nascent nucleotides, respectively) more efficiently than nicks containing Watson-Crick base pairs. Comparison of the mismatch specificity of Pol X with that of ASFV DNA ligase suggests that the latter may have evolved toward low fidelity for the purpose of generating the broadest possible spectrum of sealed mismatches. These findings are discussed in light of the genetic and antigenic variability observed among some ASFV isolates. Two novel assays for determining the concentration of active DNA ligase are also reported.


Assuntos
Vírus da Febre Suína Africana/enzimologia , Pareamento Incorreto de Bases , DNA Ligases/química , DNA Ligases/genética , Regiões 3' não Traduzidas/genética , Vírus da Febre Suína Africana/genética , Pareamento Incorreto de Bases/genética , Soluções Tampão , DNA Ligase Dependente de ATP , DNA Ligases/metabolismo , Reparo do DNA/genética , DNA Viral/química , DNA Viral/genética , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Ativação Enzimática/genética , Evolução Molecular , Variação Genética , Cinética , Concentração Osmolar , Cloreto de Potássio/química , Especificidade por Substrato/genética
11.
Biochemistry ; 44(13): 5177-87, 2005 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-15794655

RESUMO

The kinetic mechanism and the structural bases of the fidelity of DNA polymerases are still highly controversial. Here we report the use of three probes in the stopped-flow studies of Pol beta to obtain new, direct evidence for our previous interpretations: (a) Increasing the viscosity of the reaction buffer by sucrose or glycerol is expected to slow down the conformational change differentially, and it was shown to slow down the first (fast) fluorescence transition selectively. (b) Use of dNTPalphaS in place of dNTP is expected to slow down the chemical step preferentially, and it was shown to slow down the second (slow) fluorescence transition selectively. (c) The substitution-inert Rh(III)dNTP was used to show for the first time that the slow fluorescence change occurs after mixing of Pol beta.DNA.Rh(III)dNTP with Mg(II). These results, along with crystal structures, suggest that the subdomain-closing conformational change occurs before binding of the catalytic Mg(II) while the rate-limiting step occurs after binding of the catalytic Mg(II). These results provide new evidence to the mechanism we suggested previously, but do not support the results of three recent papers of computational studies. The results were further supported by a "sequential mixing" stopped-flow experiment that used no analogues, and thus ruled out the possibility that the discrepancy between experimental and computational results is due to the use of analogues. The methodologies can be used to examine other DNA polymerases to answer whether the properties of Pol beta are exceptional or general.


Assuntos
DNA Polimerase beta/química , DNA Polimerase beta/metabolismo , Animais , Sequência de Bases , Catálise , DNA/química , DNA/metabolismo , Desoxirribonucleotídeos , Técnicas In Vitro , Cinética , Magnésio/metabolismo , Sondas Moleculares , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ródio , Espectrometria de Fluorescência , Especificidade por Substrato , Tionucleotídeos , Triptofano/química , Viscosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...