Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lett Appl Microbiol ; 68(2): 165-172, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30480824

RESUMO

Dithiolopyrrolone antibiotics, produced by several micro-organisms, are known for their strong antimicrobial and antitumor activities. Among of this micro-organisms, Saccharothrix algeriensis NRRL B-24137, a rare actinobacterium, has the ability to produce several dithiolopyrrolones derivatives depending on precursors added in the culture medium. After 10 days of strain fermentation on semi-synthetic medium supplemented with cinnamic acid and HPLC purification, biosynthesis of benzoyl-pyrrothine dithiolopyrrolone was evidenced through complete spectroscopic (UV-visible and 1H and 13C NMR) and spectrometric (electron impact mass spectrum) analyses. The pure molecule showed appreciable minimum inhibitory concentration values against several Gram-positive bacteria and filamentous fungi. SIGNIFICANCE AND IMPACT OF THE STUDY: Dithiolopyrrolone antibiotics, known for their strong antimicrobial activities, gained greater interest after the discovery of their antitumor properties. Depending on precursors added, Saccharothrix algeriensis NRRL B-24137 has the ability to produce several dithiolopyrrolones derivatives. Since biological activities of dithiolopyrrolones are related to their variable structure, discover of new natural analogues to be therapeutically explored remains a significant framework of research. In this study, a new dithiolopyrrolone derivative was purified from the fermentation broth of S. algeriensis NRRL B-24137. This new antibiotic, characterized as benzoyl-pyrrothine dithiolopyrrolone, was induced by adding cinnamic acid, as precursor, to a semi-synthetic medium.


Assuntos
Actinomycetales/metabolismo , Antibacterianos/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Pirrolidinonas/farmacologia , Actinomycetales/classificação , Cinamatos/metabolismo , Meios de Cultura/farmacologia , Fermentação , Testes de Sensibilidade Microbiana , Pirrolidinonas/metabolismo
2.
Mol Plant Pathol ; 10(2): 201-12, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19236569

RESUMO

The fungus Pyrenophora tritici-repentis (Died.) causes tan spot, an important leaf disease of wheat worldwide. Isolates of this pathogen have been collected and characterized into eight races on the basis of their ability to produce three different host-selective toxins. The karyotype of 47 isolates was determined by pulsed field gel electrophoresis. The collection originated from different parts of the world and included genotypes from all races. A single isolate was characterized for each of races 3, 4 and 6, whereas fourteen, five, nine, five and eleven isolates were karyotyped for races 1, 2, 5, 7 and 8, respectively. The survey showed that the chromosome number of P. tritici-repentis was highly variable, with some isolates having as few as eight chromosomes, but others having 11 or more. Similarly, the genome size ranged from 25.5 to 48.0 Mb, and individual chromosome sizes ranged from 1.3 to more than 5.7 Mb. Considerable variation was observed in karyotype patterns among the P. tritici-repentis isolates tested. A total of 29 different karyotypes was identified among the 47 isolates. These chromosome level variations were as variable for isolates within a race as for isolates across races. Southern blot analysis of the 47 isolates with ToxA and ToxB probes revealed that the toxin genes were always located on different chromosomes. Furthermore, with six chromosome-specific single-copy probes, the ToxA-carrying chromosome was shown to be homologous among the Ptr ToxA-producing isolates, with a related chromosome in the non-ToxA-producing isolates, suggesting that the chromosome on which ToxA generally resides is of an essential nature. Interestingly, a molecular rearrangement involving a translocation of ToxA to a different chromosome was identified in one isolate.


Assuntos
Ascomicetos/genética , Ascomicetos/isolamento & purificação , Cromossomos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico/genética , Micotoxinas/metabolismo , Southern Blotting , Sondas de DNA , Densitometria , Cariotipagem
3.
Int J Syst Evol Microbiol ; 54(Pt 4): 1377-1381, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15280317

RESUMO

The taxonomic position of a soil isolate, strain SA 233T, recovered from Saharan soil from Algeria was established using a polyphasic approach. This isolate has been previously reported to produce three novel dithiolopyrrolone antibiotics, and preliminary chemotaxonomic and morphological characteristics suggested that it was representative of a member of the genus Saccharothrix. Phylogenetic analysis of the strain from 16S rDNA sequences, along with a detailed analysis of morphological, chemotaxonomic and physiological characteristics, indicates that it belongs to the genus Saccharothrix and represents a novel species that is readily distinguished from all recognized Saccharothrix species. The name Saccharothrix algeriensis sp. nov. is proposed for the isolate, with type strain SA 233T (=NRRL B-24137T=DSM 44581T).


Assuntos
Actinomycetales/classificação , Actinomycetales/isolamento & purificação , Microbiologia do Solo , Actinomycetales/fisiologia , Actinomycetales/ultraestrutura , Argélia , Técnicas de Tipagem Bacteriana , DNA Bacteriano/análise , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Ribossômico/química , Ácidos Graxos/análise , Genes de RNAr , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência , Esporos Bacterianos/ultraestrutura
4.
Theor Appl Genet ; 107(7): 1181-6, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12898022

RESUMO

Septoria tritici blotch, caused by Mycosphaerella graminicola, is a serious foliar disease of wheat worldwide. Qualitative, race-specific resistance sources have been identified and utilized for resistant cultivar development. However, septoria tritici blotch resistant varieties have succumbed to changes in virulence of M. graminicola on at least three continents. The use of resistance gene pyramids may slow or prevent the breakdown of resistance. A clear understanding of the genetics of resistance and the identification of linked PCR-based markers will facilitate the recovery of wheat lines carrying multiple septoria tritici blotch resistance genes. The resistance gene in ST6 to isolate MG2 of M. graminicola was mapped with microsatellite markers in two populations, ST6/Erik and ST6/Katepwa. Bulk segregant analysis identified a marker on chromosome 4AL putatively linked to the resistance gene. A large linkage group was identified in each population using additional microsatellite markers mapping to chromosome 4AL. The resistance gene in ST6 mapped to the distal end of chromosome 4AL in each mapping population and was designated Stb7. Three of the microsatellite loci, Xwmc313, Xwmc219 and Xgwm160, mapped within 3.5 cM of Stb7; however, none flanked Stb7. Xwmc313 was the closest and mapped 0.3 and 0.5 cM from Stb7 in the crosses ST6/Katepwa and ST6/Erik, respectively. WMC313 will be very useful for marker-assisted selection of Stb7 in Canadian breeding programs because the ST6 allele of Xwmc313 was not identified in any of the Canadian common wheat cultivars tested.


Assuntos
Ascomicetos/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Genes de Plantas/genética , Doenças das Plantas/microbiologia , Triticum/microbiologia , Ascomicetos/patogenicidade , Segregação de Cromossomos , Cruzamentos Genéticos , Primers do DNA/química , DNA de Plantas/genética , Ligação Genética , Imunidade Inata/genética , Repetições de Microssatélites , Doenças das Plantas/genética , Folhas de Planta/microbiologia , Reação em Cadeia da Polimerase , Triticum/genética
5.
Phytopathology ; 93(4): 391-6, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18944352

RESUMO

ABSTRACT Pyrenophora tritici-repentis, causal agent of tan spot, induces necrosis and chlorosis in its wheat host. The tan spot system conforms to the toxin model and three host-specific toxins have been identified (Ptr ToxA, Ptr ToxB, and putative Ptr ToxC). Processing of a collection of isolates, obtained in the Fertile Crescent and Caucasus regions, yielded two new virulence patterns. Isolate Az35-5 combined the virulences of races 2 and 5 and was classified in the new race 7. Isolates TS93-71B and TS93-71F had a virulence pattern that combined those of races 2, 3, and 5 and were grouped in the new race 8. Southern analysis revealed that all three isolates possessed copies of the ToxA and ToxB genes, the first time the genes were found in a common background. The production of Ptr ToxA and Ptr ToxB by the isolates was confirmed by western blotting. Virulence patterns suggested that TS93-71B and TS93-71F may also produce Ptr ToxC, even though it was not present at detectable levels in culture filtrates. The identification of races 7 and 8 complete the theoretical maximum number of races that can be differentiated by three loci in the host (2(3) = 8), assuming a one-to-one relationship. It appears that the wheat/P. tritici-repentis system is a mirror image of the classical gene-for-gene relationship.

6.
Phytopathology ; 92(2): 138-44, 2002 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18943086

RESUMO

ABSTRACT Mycosphaerella graminicola causes Septoria tritici blotch of hexaploid and tetraploid wheat. The inheritance of high-level resistance to Septoria tritici blotch was studied in controlled environment experiments. Intraspecific reciprocal crosses were made between hexaploid wheat lines Salamouni, ST6, Katepwa, and Erik, and the tetraploid wheat lines Coulter and 4B1149. Parental, F(1), F(2), F(3), BC(1)F(1), and BC(1)F(2) populations were evaluated for reaction to isolates MG2 and MG96-36 of M. graminicola. Resistance was controlled by incompletely dominant nuclear genes in all cases. Salamouni had three independent resistance genes to isolate MG2, two of which also controlled resistance to isolate MG96-36. ST6 had a single resistance gene to isolate MG2 and none to isolate MG96-36. The resistance genes in Salamouni and ST6 were not allelic. Two independent genes control resistance to isolate MG2 in Coulter, one of which also controlled resistance to isolate MG96-36. These data are consistent with a gene-for-gene interaction in the wheat-M. graminicola pathosystem.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...