Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
eNeuro ; 11(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38942474

RESUMO

Acetylcholine (ACh) neurons in the central nervous system are required for the coordination of neural network activity during higher brain functions, such as attention, learning, and memory, as well as locomotion. Disturbed cholinergic signaling has been described in many neurodevelopmental and neurodegenerative disorders. Furthermore, cotransmission of other signaling molecules, such as glutamate and GABA, with ACh has been associated with essential roles in brain function or disease. However, it is unknown when ACh neurons become cholinergic during development. Thus, understanding the timeline of how the cholinergic system develops and becomes active in the healthy brain is a crucial part of understanding brain development. To study this, we used transgenic mice to selectively label ACh neurons with tdTomato. We imaged serial sectioned brains and generated whole-brain reconstructions at different time points during pre- and postnatal development. We found three crucial time windows-two in the prenatal and one in the postnatal brain-during which most ACh neuron populations become cholinergic in the brain. We also found that cholinergic gene expression is initiated in cortical ACh interneurons, while the cerebral cortex is innervated by cholinergic projection neurons from the basal forebrain. Taken together, we show that ACh neuron populations are present and become cholinergic before postnatal day 12, which is the onset of major sensory processes, such as hearing and vision. We conclude that the birth of ACh neurons and initiation of cholinergic gene expression are temporally separated during development but highly coordinated by brain anatomical structure.


Assuntos
Acetilcolina , Encéfalo , Neurônios Colinérgicos , Camundongos Transgênicos , Animais , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Acetilcolina/metabolismo , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Camundongos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Interneurônios/metabolismo
2.
Front Behav Neurosci ; 16: 1067409, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505727

RESUMO

Introduction: Altered signaling or function of acetylcholine (ACh) has been reported in various neurological diseases, including Alzheimer's disease, Tourette syndrome, epilepsy among others. Many neurons that release ACh also co-transmit the neurotransmitter gamma-aminobutyrate (GABA) at synapses in the hippocampus, striatum, substantia nigra, and medial prefrontal cortex (mPFC). Although ACh transmission is crucial for higher brain functions such as learning and memory, the role of co-transmitted GABA from ACh neurons in brain function remains unknown. Thus, the overarching goal of this study was to investigate how a systemic loss of GABA co-transmission from ACh neurons affected the behavioral performance of mice. Methods: To do this, we used a conditional knock-out mouse of the vesicular GABA transporter (vGAT) crossed with the ChAT-Cre driver line to selectively ablate GABA co-transmission at ACh synapses. In a comprehensive series of standardized behavioral assays, we compared Cre-negative control mice with Cre-positive vGAT knock-out mice of both sexes. Results: Loss of GABA co-transmission from ACh neurons did not disrupt the animal's sociability, motor skills or sensation. However, in the absence of GABA co-transmission, we found significant alterations in social, spatial and fear memory as well as a reduced reliance on striatum-dependent response strategies in a T-maze. In addition, male conditional knockout (CKO) mice showed increased locomotion. Discussion: Taken together, the loss of GABA co-transmission leads to deficits in higher brain functions and behaviors. Therefore, we propose that ACh/GABA co-transmission modulates neural circuitry involved in the affected behaviors.

3.
J Physiol ; 592(15): 3201-14, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24879866

RESUMO

There is much interest in α7 nicotinic acetylcholine receptors (nAChRs) in CNS function since they are found throughout peripheral tissues as well as being highly expressed in brain regions implicated in attention, learning and memory. As such, the role of these receptors in many aspects of CNS function and disease is being actively investigated. To date, only one null mouse model (A7KO) is available which is non-conditional and constitutive. Since α7 nAChRs are present on neurons and glia (including astrocytes), as well as being developmentally regulated, there is an unmet need for the technical capability to control α7 nAChR gene expression. Therefore we have generated mice in which the fourth exon of the α7 nAChR gene (Chrna7) is flanked by loxP sites (B6-Chrna7(LBDEx4007Ehs)) which we refer to as floxed α7 nAChR conditional knockout or α7nAChR(flox). We validated the chosen approach by mating α7nAChR(flox) with mice expressing Cre recombinase driven by the glial acidic fibrillary protein (GFAP)-Cre promoter (GFAP-A7KO) to test whether α7nAChR(flox), GFAP-A7KO and appropriate littermate controls performed equally in our standard Rodent In Vivo Assessment Core battery to assess general health, locomotion, emotional and cognitive behaviours. Neither α7nAChR(flox) nor GFAP-A7KO exhibited significant differences from littermate controls in any of the baseline behavioural assessments we conducted, similar to the 'first generation' non-conditional A7KO mice. We also determined that α7 nAChR binding sites were absent on GFAP-positive astrocytes in hippocampal slices obtained from GFAP-A7KO offspring from α7nAChR(flox) and GFAP-Cre crosses. Finally, we validated that Cre recombinase (Cre)-mediated excision led to functional, cell- and tissue-specific loss of α7 nAChRs by demonstrating that choline-induced α7 nAChR currents were present in Cre-negative, but not synapsin promoter-driven Cre-positive, CA1 pyramidal neurons. Additionally, electrophysiological characterization of α7 nAChR-mediated current traces was similar in terms of amplitude and time constants of decay (during desensitization) for the α7nAChR(flox) and wild-type (WT) mice. Thus, we have in vivo and in vitro evidence that the Chrna7 exon 4 targeting strategy does not alter behavioural, cognitive, or electrophysiological properties compared to WT and that Cre-mediated excision is an effective approach to delete α7 nAChR expression in a cell-specific manner.


Assuntos
Marcação de Genes/métodos , Neurônios/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Potenciais de Ação , Animais , Astrócitos/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/metabolismo , Região CA1 Hipocampal/fisiologia , Éxons , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Integrases/genética , Integrases/metabolismo , Aprendizagem em Labirinto , Camundongos , Camundongos Knockout , Fenótipo , Regiões Promotoras Genéticas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
4.
J Neurosci ; 32(36): 12337-48, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22956824

RESUMO

Correlated presynaptic and postsynaptic activity is the key factor in inducing Hebbian plasticity and memory. However, little is known about the physiological events that could mediate such coordination. Correlated cholinergic input induces spike timing-dependent plasticity-like hippocampal synaptic plasticity. Cholinergic receptors are localized to both presynaptic and postsynaptic glutamatergic sites and thus have the potential to coordinate presynaptic and postsynaptic activity to induce plasticity. By directly monitoring presynaptic and postsynaptic activities with genetically encoded calcium indicators in mouse septohippocampal cocultures, we found interactive but independent presynaptic and postsynaptic modulations in the cholinergic-dependent synaptic plasticity. Neither presynaptic nor postsynaptic modulation alone is sufficient, but instead a coordinated modulation at both sites is required to induce the plasticity. Therefore, we propose that correlated cholinergic input can coordinate presynaptic and postsynaptic activities to induce timing-dependent synaptic plasticity, providing a novel mechanism by which neuromodulators precisely modulate network activity and plasticity with high efficiency and temporal precision.


Assuntos
Neurônios Colinérgicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Terminações Pré-Sinápticas/fisiologia , Receptores Nicotínicos/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Rede Nervosa/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Tempo de Reação/fisiologia , Receptor Nicotínico de Acetilcolina alfa7
5.
J Physiol ; 588(Pt 22): 4415-29, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20837638

RESUMO

The rat α7 nicotinic acetylcholine receptor (nAChR) has a proline residue near the middle of the ß9 strand. The replacement of this proline residue at position 180 (P180) by either threonine (α7-P180T) or serine (α7-P180S) slowed the onset of desensitization dramatically, with half-times of ~930 and 700 ms, respectively, compared to 90 ms for the wild-type receptor. To investigate the importance of the hydroxyl group on the position 180 side-chains, the mutant receptors α7-P180Y and α7-P180F were studied and showed half-times of desensitization of 650 and 160 ms, respectively. While a position 180 side-chain OH group may contribute to the slow desensitization rates, α7-P180S and α7-P180V resulted in receptors with similar desensitization rates, suggesting that increased backbone to backbone H bonding expected in the absence of proline at position 180 would likely exert a great effect on desensitization. Single channel recordings indicated that for the α7-P180T receptor there was a significantly reduced closed time without any change in single channel conductance (as compared to wild-type). Kinetic simulations indicated that all changes observed for the mutant channel behaviour were reproduced by decreasing the rate of desensitization, and increasing the microscopic affinity to resting receptors. Molecular dynamics (MD) simulations on a homology model were used to provide insight into likely H bond interactions within the outer ß-sheet that occur when the P180 residue is mutated. All mutations analysed increased about twofold the predicted number of H bonds between the residue at position 180 and the backbone of the ß10 strand. Moreover, the α7-P180T and α7-P180S mutations also formed some intrastrand H bonds along the ß9 strand, although H bonding of the OH groups of the threonine or serine side-chains was predicted to be infrequent. Our results indicate that rapid desensitization of the wild-type rat α7 nAChR is facilitated by the presence of the proline residue within the ß9 strand.


Assuntos
Prolina/química , Prolina/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Sequência de Aminoácidos , Animais , Células CHO , Embrião de Galinha , Cricetinae , Cricetulus , Cristalografia por Raios X , Feminino , Ativação do Canal Iônico/genética , Dados de Sequência Molecular , Mutação , Estrutura Secundária de Proteína , Ratos , Fatores de Tempo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
6.
Biochemistry ; 49(10): 2279-87, 2010 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-20136097

RESUMO

We identified a homologue of the molluscan acetylcholine-binding protein (AChBP) in the marine polychaete Capitella teleta, from the annelid phylum. The amino acid sequence of C. teleta AChBP (ct-AChBP) is 21-30% identical with those of known molluscan AChBPs. Sequence alignments indicate that ct-AChBP has a shortened Cys loop compared to other Cys loop receptors, and a variation on a conserved Cys loop triad, which is associated with ligand binding in other AChBPs and nicotinic ACh receptor (nAChR) alpha subunits. Within the D loop of ct-AChBP, a conserved aromatic residue (Tyr or Trp) in nAChRs and molluscan AChBPs, which has been implicated directly in ligand binding, is substituted with an isoleucine. Mass spectrometry results indicate that Asn122 and Asn216 of ct-AChBP are glycosylated when expressed using HEK293 cells. Small-angle X-ray scattering data suggest that the overall shape of ct-AChBP in the apo or unliganded state is similar to that of homologues with known pentameric crystal structures. NMR experiments show that acetylcholine, nicotine, and alpha-bungarotoxin bind to ct-AChBP with high affinity, with K(D) values of 28.7 microM, 209 nM, and 110 nM, respectively. Choline bound with a lower affinity (K(D) = 163 microM). Our finding of a functional AChBP in a marine annelid demonstrates that AChBPs may exhibit variations in hallmark motifs such as ligand-binding residues and Cys loop length and shows conclusively that this neurotransmitter binding protein is not limited to the phylum Mollusca.


Assuntos
Acetilcolina/metabolismo , Proteínas de Transporte/análise , Proteínas de Transporte/metabolismo , Poliquetos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Proteínas de Transporte/isolamento & purificação , Linhagem Celular , Biologia Computacional , Humanos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
7.
J Neurosci ; 29(33): 10436-48, 2009 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-19692619

RESUMO

The entorhinal cortex (EC) is a part of the hippocampal complex that is essential to learning and memory, and nicotine affects memory by activating nicotinic acetylcholine receptors (nAChRs) in the hippocampal complex. However, it is not clear what types of neurons in the EC are sensitive to nicotine and whether they play a role in nicotine-induced memory functions. Here, we have used voltage-sensitive dye imaging methods to locate the neuronal populations responsive to nicotine in entorhino-hippocampal slices and to clarify which nAChR subtypes are involved. In combination with patch-clamp methods, we found that a concentration of nicotine comparable to exposure during smoking depolarized neurons in layer VI of the EC (ECVI) by acting through the non-alpha7 subtype of nAChRs. Neurons in the subiculum (Sb; close to the deep EC layers) also contain nicotine-sensitive neurons, and it is known that Sb neurons project to the ECVI. When we recorded evoked EPSCs (eEPSCs) from ECVI neurons while stimulating the Sb near the CA1 region, a low dose of nicotine not only enhanced synaptic transmission (by increasing eEPSC amplitude) but also enhanced plasticity by converting tetanus stimulation-induced short-term potentiation to long-term potentiation; nicotine enhanced synaptic transmission and plasticity of ECVI synapses by acting on both the alpha7 and non-alpha7 subtypes of nAChRs. Our data suggest that ECVI neurons are important regulators of hippocampal function and plasticity during smoking.


Assuntos
Córtex Entorrinal/efeitos dos fármacos , Córtex Entorrinal/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Animais , Técnicas In Vitro , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Ratos , Ratos Wistar , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia
8.
Mol Pharmacol ; 72(4): 838-49, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17609418

RESUMO

Neuronal nicotinic acetylcholine receptor (nAChR) signaling has been implicated in a variety of normal central nervous system (CNS) functions as well as an array of neuropathologies. Previous studies have demonstrated both neurotoxic and neuroprotective actions of peptides derived from apolipoprotein E (apoE). It has been discovered that apoE-derived peptides inhibit native and recombinant alpha7-containing nAChRs, indicating a direct interaction between apoE peptides and nAChRs. To probe the structure/function interaction between alpha7 nAChRs and the apoE peptide apoE(141-148), experiments were conducted in Xenopus laevis oocytes expressing wild-type and mutated nAChRs. Mutation of Trp55 to alanine blocks apoE peptide-induced inhibition of acetylcholine (ACh)-mediated alpha7 nAChR responses. Additional mutations at Trp55 suggest that hydrophobic interactions between the receptor and apoE(141-148) are essential for inhibition of alpha7 nAChR function. A mutated apoE peptide also demonstrated decreased inhibition at alpha7-W55A nAChRs as well as activity-dependent inhibition of both wild-type alpha7 nAChRs and alpha7-W55A receptors. Finally, a three-dimensional model of the alpha7 nAChR was developed based on the recently refined Torpedo marmorata nACh receptor. A structural model is proposed for the binding of apoE(141-148) to the alpha7 nAChR where the peptide binds at the interface between two subunits, near the ACh binding site. Similar to the functional data, the computational docking suggests the importance of hydrophobic interactions between the alpha7 nAChR and the apoE peptide for inhibition of receptor function. The current data suggest a mode for apoE peptide binding that directly blocks alpha7 nAChR activity and consequently may disrupt nAChR signaling.


Assuntos
Apolipoproteínas E/metabolismo , Fragmentos de Peptídeos/metabolismo , Receptores Nicotínicos/metabolismo , Animais , Apolipoproteínas E/química , Mutação , Ligação Proteica , Conformação Proteica , Receptores Nicotínicos/genética , Transdução de Sinais , Torpedo , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7
9.
J Mol Neurosci ; 27(1): 13-21, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16055943

RESUMO

Neuronal nicotinic acetylcholine receptors (nAChRs) are involved in a variety of physiological processes, including cognition and development. Dysfunctions in nAChRs have been linked to Alzheimer's disease (AD), a human neurological disorder that is the leading cause of dementia. AD is characterized by an increasing loss of cognitive function, nAChRs, cholinergic neurons, and choline acetyltransferase activity. A major hallmark of AD is the presence of extracellular neuritic plaques composed of the beta-amyloid (Abeta1-42) peptide; however, the link between Abeta1-42 and the loss of cognitive function has not been established. Many groups have shown direct interactions between Abeta1-42 and nAChR function, however, with differing results. For example, in rat hippocampal CA1 interneurons in slices, we found that Abeta1-42 inhibits nAChR channels directly, and non-alpha7 receptors were more sensitive to block than alpha7 receptors. However, some groups have found that alpha7 subtypes were potently blocked by Abeta1-42, whereas other groups reported that Abeta1-42 can activate nAChRs (i.e., both alpha7 and non-alpha7 subtypes). To further investigate the link between nAChR function and Abeta1-42, we expressed various subtypes of nAChRs in Xenopus oocytes (e.g., alpha4beta2, alpha2beta2, alpha4alpha5beta2, and alpha7) and found that Abeta1-42 blocked these various non-alpha7 nAChRs, without any effect on alpha7 nAChRs. Furthermore, none of these channels was activated by Abeta1-42. The relative block by Abeta1-42 was dependent on the subunit makeup and apparent stoichiometry of these receptors. These data further support our previous findings that Abeta1-42 directly and preferentially inhibits non-alpha7 nAChRs.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Oócitos/fisiologia , Fragmentos de Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Receptores Nicotínicos/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Receptores Nicotínicos/genética , Xenopus laevis
10.
Artigo em Inglês | MEDLINE | ID: mdl-14643174

RESUMO

The localization of 15-lipoxygenase-1 (15-LO-1) in human colorectal carcinoma and normal adjacent tissue was examined using immunohistochemistry. In normal tissues, 15-LO-1 was strongly localized in the mucosal epithelium. Conversely, in tumor tissues, staining for 15-LO-1 was dispersed throughout the tissue, weak in neoplastic epithelium, and strong in stromal inflammatory cells. The addition of 50 microM 13(S)-hydroxyeicosatetraenoic acid (HODE), resulted in decreased cell proliferation after 72 h, but lower concentrations (5 or 10 microM) had no effect compared to vehicle treated Caco-2 cells. In addition, 13(S)-HODE had no effect on apoptosis or differentiation of the Caco-2 cells. Microarray analyses of RNA from Caco-2 cells treated with 5 microM 13(S)-HODE revealed changes in 17 genes. HCT-116 colorectal cells were stably transfected with 15-LO-1. In athymic nude mice, transplantable tumors derived from 15-LO-1 HCT-116 cells were smaller than tumors derived from vector HCT-116 cells. These data demonstrate that 13(S)-HODE induces changes in gene expression and has anti-tumorigenic effects.


Assuntos
Antineoplásicos/metabolismo , Araquidonato 15-Lipoxigenase/metabolismo , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Animais , Apoptose/efeitos dos fármacos , Células CACO-2 , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Inflamação/enzimologia , Inflamação/patologia , Ácidos Linoleicos/farmacologia , Masculino , Camundongos , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos
11.
J Physiol ; 540(Pt 2): 425-34, 2002 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-11956333

RESUMO

Rat hippocampal interneurons express diverse subtypes of functional nicotinic acetylcholine receptors (nAChRs), including alpha7-containing receptors that have properties unlike those expected for homomeric alpha7 nAChRs. We previously reported a strong correlation between expression of the alpha7 and of the beta2 subunits in individual neurons. To explore whether co-assembly of the alpha7 and beta2 subunits might occur, these subunits were co-expressed in Xenopus oocytes and the functional properties of heterologously expressed nAChRs were characterized by two-electrode voltage clamp. Co-expression of the beta2 subunit, both wild-type and mutant forms, with the alpha7 subunit significantly slowed the rate of nAChR desensitization and altered the pharmacological properties. Whereas ACh, carbachol and choline were full or near-full agonists for homomeric alpha7 receptor channels, both carbachol and choline were only partial agonists in oocytes expressing both alpha7 and beta2 subunits. In addition the EC(50) values for all three agonists significantly increased when the beta2 subunit was co-expressed with the alpha7 subunit. Co-expression with the beta2 subunit did not result in any significant change in the current-voltage curve. Biochemical evidence for the co-assembly of the alpha7 and beta2 subunits was obtained by co-immunoprecipitation of these subunits from transiently transfected human embryonic kidney (TSA201) cells. These data provide direct biophysical and molecular evidence that the nAChR alpha7 and beta2 subunits co-assemble to form a functional heteromeric nAChR with functional and pharmacological properties different from those of homomeric alpha7 channels. This co-assembly may help to explain nAChR channel diversity in rat hippocampal interneurons, and perhaps in other areas of the nervous system.


Assuntos
Receptores Nicotínicos/biossíntese , Acetilcolina/farmacologia , Animais , Carbacol/farmacologia , Colina/farmacologia , DNA Complementar/biossíntese , DNA Complementar/genética , Estimulação Elétrica , Eletrofisiologia , Humanos , Cinética , Potenciais da Membrana/fisiologia , Agonistas Muscarínicos/farmacologia , Oócitos/metabolismo , Técnicas de Patch-Clamp , Testes de Precipitina , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Ratos , Receptores Nicotínicos/genética , Transfecção , Xenopus , Receptor Nicotínico de Acetilcolina alfa7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...