Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 290(2): 286-309, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698446

RESUMO

Mediator is a large modular protein assembly whose function as a coactivator of transcription is conserved in all eukaryotes. The Mediator complex can integrate and relay signals from gene-specific activators bound at enhancers to activate the general transcription machinery located at promoters. It has thus been described as a bridge between these elements during initiation of transcription. Here, we review recent studies on Mediator relating to its structure, gene specificity and general requirement, roles in chromatin architecture as well as novel concepts involving phase separation and transcriptional bursting. We revisit the mechanism of action of Mediator and ultimately put forward models for its mode of action in gene activation.


Assuntos
Cromatina , Fatores de Transcrição , Fatores de Transcrição/genética , Cromatina/genética , Ativação Transcricional , Complexo Mediador/genética , Complexo Mediador/química , Complexo Mediador/metabolismo , Sequências Reguladoras de Ácido Nucleico
2.
Mol Cell ; 81(17): 3542-3559.e11, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34380014

RESUMO

The histone chaperone FACT occupies transcribed regions where it plays prominent roles in maintaining chromatin integrity and preserving epigenetic information. How it is targeted to transcribed regions, however, remains unclear. Proposed models include docking on the RNA polymerase II (RNAPII) C-terminal domain (CTD), recruitment by elongation factors, recognition of modified histone tails, and binding partially disassembled nucleosomes. Here, we systematically test these and other scenarios in Saccharomyces cerevisiae and find that FACT binds transcribed chromatin, not RNAPII. Through a combination of high-resolution genome-wide mapping, single-molecule tracking, and mathematical modeling, we propose that FACT recognizes the +1 nucleosome, as it is partially unwrapped by the engaging RNAPII, and spreads to downstream nucleosomes aided by the chromatin remodeler Chd1. Our work clarifies how FACT interacts with genes, suggests a processive mechanism for FACT function, and provides a framework to further dissect the molecular mechanisms of transcription-coupled histone chaperoning.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Nucleossomos/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/genética
3.
Mol Cell Proteomics ; 19(5): 808-827, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32123031

RESUMO

HNF4α is a nuclear receptor produced as 12 isoforms from two promoters by alternative splicing. To characterize the transcriptional capacities of all 12 HNF4α isoforms, stable lines expressing each isoform were generated. The entire transcriptome associated with each isoform was analyzed as well as their respective interacting proteome. Major differences were noted in the transcriptional function of these isoforms. The α1 and α2 isoforms were the strongest regulators of gene expression whereas the α3 isoform exhibited significantly reduced activity. The α4, α5, and α6 isoforms, which use an alternative first exon, were characterized for the first time, and showed a greatly reduced transcriptional potential with an inability to recognize the consensus response element of HNF4α. Several transcription factors and coregulators were identified as potential specific partners for certain HNF4α isoforms. An analysis integrating the vast amount of omics data enabled the identification of transcriptional regulatory mechanisms specific to certain HNF4α isoforms, hence demonstrating the importance of considering all isoforms given their seemingly diverse functions.


Assuntos
Fator 4 Nuclear de Hepatócito/metabolismo , Transcrição Gênica , Linhagem Celular Tumoral , DNA/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Fluorescência Verde/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Humanos , Ligação Proteica , Isoformas de Proteínas/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Elementos de Resposta/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
4.
Cancers (Basel) ; 11(5)2019 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-31060309

RESUMO

Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor that acts as a master regulator of genes for several endoderm-derived tissues, including the intestine, in which it plays a central role during development and tumorigenesis. To better define the mechanisms by which HNF4α can influence these processes, we identified proteins interacting with HNF4α using stable isotope labelling with amino acids in cell culture (SILAC)-based quantitative proteomics with either immunoprecipitation of green fluorescent protein (GFP) or with proximity-dependent purification by the biotin ligase BirA (BioID), both fused to HNF4α. Surprisingly, these analyses identified a significant enrichment of proteins characterized with a role in DNA repair, a so far unidentified biological feature of this transcription factor. Several of these proteins including PARP1, RAD50, and DNA-PKcs were confirmed to interact with HNF4α in colorectal cancer cell lines. Following DNA damage, HNF4α was able to increase cell viability in colorectal cancer cells. Overall, these observations identify a potential role for this transcription factor during the DNA damage response.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...