Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Health Care Manage Rev ; 49(2): 127-138, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38393982

RESUMO

BACKGROUND: Clinical care in modern intensive care units (ICUs) combines multidisciplinary expertise and a complex array of technologies. These technologies have clearly advanced the ability of clinicians to do more for patients, yet so much equipment also presents the possibility for cognitive overload. PURPOSE: The aim of this study was to investigate clinicians' experiences with and perceptions of technology in ICUs. METHODOLOGY/APPROACH: We analyzed qualitative data from 30 interviews with ICU clinicians and frontline managers within four ICUs. RESULTS: Our interviews identified three main challenges associated with technology in the ICU: (a) too many technologies and too much data; (b) inconsistent and inaccurate technologies; and (c) not enough integration among technologies, alignment with clinical workflows, and support for clinician identities. To address these challenges, interviewees highlighted mitigation strategies to address both social and technical systems and to achieve joint optimization. CONCLUSION: When new technologies are added to the ICU, they have potential both to improve and to disrupt patient care. To successfully implement technologies in the ICU, clinicians' perspectives are crucial. Understanding clinicians' perspectives can help limit the disruptive effects of new technologies, so clinicians can focus their time and attention on providing care to patients. PRACTICE IMPLICATIONS: As technology and data continue to play an increasingly important role in ICU care, everyone involved in the design, development, approval, implementation, and use of technology should work together to apply a sociotechnical systems approach to reduce possible negative effects on clinical care for critically ill patients.


Assuntos
Atitude do Pessoal de Saúde , Unidades de Terapia Intensiva , Humanos , Estado Terminal , Fluxo de Trabalho , Cuidados Críticos
2.
J Med Internet Res ; 24(6): e36882, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35635840

RESUMO

BACKGROUND: The COVID-19 pandemic prompted widespread implementation of telehealth, including in the inpatient setting, with the goals to reduce potential pathogen exposure events and personal protective equipment (PPE) utilization. Nursing workflow adaptations in these novel environments are of particular interest given the association between nursing time at the bedside and patient safety. Understanding the frequency and duration of nurse-patient encounters following the introduction of a novel telehealth platform in the context of COVID-19 may therefore provide insight into downstream impacts on patient safety, pathogen exposure, and PPE utilization. OBJECTIVE: The aim of this study was to evaluate changes in nursing workflow relative to prepandemic levels using a real-time locating system (RTLS) following the deployment of inpatient telehealth on a COVID-19 unit. METHODS: In March 2020, telehealth was installed in patient rooms in a COVID-19 unit and on movable carts in 3 comparison units. The existing RTLS captured nurse movement during 1 pre- and 5 postpandemic stages (January-December 2020). Change in direct nurse-patient encounters, time spent in patient rooms per encounter, and total time spent with patients per shift relative to baseline were calculated. Generalized linear models assessed difference-in-differences in outcomes between COVID-19 and comparison units. Telehealth adoption was captured and reported at the unit level. RESULTS: Change in frequency of encounters and time spent per encounter from baseline differed between the COVID-19 and comparison units at all stages of the pandemic (all P<.001). Frequency of encounters decreased (difference-in-differences range -6.6 to -14.1 encounters) and duration of encounters increased (difference-in-differences range 1.8 to 6.2 minutes) from baseline to a greater extent in the COVID-19 units relative to the comparison units. At most stages of the pandemic, the change in total time nurses spent in patient rooms per patient per shift from baseline did not differ between the COVID-19 and comparison units (all P>.17). The primary COVID-19 unit quickly adopted telehealth technology during the observation period, initiating 15,088 encounters that averaged 6.6 minutes (SD 13.6) each. CONCLUSIONS: RTLS movement data suggest that total nursing time at the bedside remained unchanged following the deployment of inpatient telehealth in a COVID-19 unit. Compared to other units with shared mobile telehealth units, the frequency of nurse-patient in-person encounters decreased and the duration lengthened on a COVID-19 unit with in-room telehealth availability, indicating "batched" redistribution of work to maintain total time at bedside relative to prepandemic periods. The simultaneous adoption of telehealth suggests that virtual care was a complement to, rather than a replacement for, in-person care. However, study limitations preclude our ability to draw a causal link between nursing workflow change and telehealth adoption. Thus, further evaluation is needed to determine potential downstream implications on disease transmission, PPE utilization, and patient safety.


Assuntos
COVID-19 , Cuidados de Enfermagem , Telemedicina , COVID-19/epidemiologia , COVID-19/enfermagem , Unidades Hospitalares/organização & administração , Humanos , Cuidados de Enfermagem/organização & administração , Pandemias , Telemedicina/organização & administração , Fluxo de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...