Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Med Biol ; 68(4)2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36638536

RESUMO

Objective.Adaptive radiotherapy techniques available on the MR-linac, such as daily plan adaptation, gating, and dynamic tracking, require versatile dosimetric detectors to validate end-to-end workflows. Plastic scintillator detectors (PSDs) offer great potential with features including: water equivalency, MRI-compatibility, and time-resolved dose measurements. Here, we characterize the performance of the HYPERSCINT RP-200 PSD (MedScint, Quebec, CA) in a 1.5 T MR-linac, and we demonstrate its suitability for dosimetry, including in a moving target.Approach.Standard techniques of detector testing were performed using a Beamscan water tank (PTW, Freiburg, DE) and compared to microDiamond (PTW, Freiburg, DE) readings. Orientation dependency was tested using the same phantom. An RW3 solid water phantom was used to evaluate detector consistency, dose linearity, and dose rate dependence. To determine the sensitivity to motion and to MRI scanning, the Quasar MRI4Dphantom (Modus, London, ON) was used statically or with sinusoidal motion (A= 10 mm,T= 4 s) to compare PSD and Semiflex ionization chamber (PTW, Freiburg, DE) readings. Conformal beams from gantry 0° and 90° were used as well as a 15-beam 8 × 7.5 Gy lung IMRT plan.Main results.Measured profiles, PDD curves and field-size dependence were consistent with the microDiamond readings with differences well within our clinical tolerances. The angular dependence gave variations up to 0.8% when not irradiating directly from behind the scintillation point. Experiments revealed excellent detector consistency between repeated measurements (SD = 0.06%), near-perfect dose linearity (R2= 1) and a dose rate dependence <0.3%. Dosimetric effects of MRI scanning (≤0.3%) and motion (≤1.3%) were minimal. Measurements were consistent with the Semiflex (differences ≤1%), and with the treatment planning system with differences of 0.8% and 0.4%, with and without motion.Significance.This study demonstrates the suitability of the HYPERSCINT PSD for accurate time-resolved dosimetry measurements in the 1.5 T MR-linac, including during MR scanning and target motion.


Assuntos
Radiometria , Água , Radiometria/métodos , Imageamento por Ressonância Magnética/métodos , Fenômenos Físicos , Imagens de Fantasmas
2.
Phys Med Biol ; 68(1)2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-36541552

RESUMO

Objective.This study aimed at investigating through Monte Carlo simulations the limitations of a novel hybrid Cerenkov-scintillation detector and the associated method for irradiation angle measurements.Approach.Using Monte Carlo simulations, previous experimental irradiations of the hybrid detector with a linear accelerator were replicated to evaluate its general performances and limitations. Cerenkov angular calibration curves and irradiation angle measurements were then compared. Furthermore, the impact of the Cerenkov light energy dependency on the detector accuracy was investigated using the energy spectra of electrons travelling through the detector.Main results.Monte Carlo simulations were found to be in good agreement with experimental values. The irradiation angle absolute mean error was found to be less than what was obtained experimentally, with a maximum value of 1.12° for the 9 MeV beam. A 0.4% increase of the ratio of electrons having an energy below 1 MeV to the total electrons was found to impact the Cerenkov light intensity collected as a function of the incident angle. The effect of the Cerenkov intensity variation on the measured angle was determined to vary according to the slope of the angular calibration curve. While the contribution of scattered electrons with a lower energy affects the detector accuracy, the greatest discrepancies result from the limitations of the calculation method and the calibration curve itself.Significance.A precise knowledge of the limitations of the hybrid detector and the irradiation angle calculation method is crucial for a clinical implementation. Moreover, the simulations performed in this study also corroborate hypotheses made regarding the relations between multiple Cerenkov dependencies and observations from the experimental measurements.


Assuntos
Luz , Radiometria , Método de Monte Carlo , Radiometria/métodos
3.
Phys Med Biol ; 67(10)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35483351

RESUMO

Objective.In this study, we propose a novel approach designed to take advantage of the Cerenkov light angular dependency to perform a direct measurement of an external beam irradiation angle.Approach.A Cerenkov probe composed of a 10 mm long filtered sensitive volume of clear PMMA optical fibre was built. Both filtered and raw Cerenkov signals from the transport fibre were collected through a single 1 mm diameter transport fibre. An independent plastic scintillation detector composed of 10 mm BCF12 scintillating fibre was also used for simultaneous dose measurements. A first series of measurements aimed at validating the ability to account for the Cerenkov electron energy spectrum dependency by simultaneously measuring the deposited dose, thus isolating signal variations resulting from the angular dependency. Angular calibration curve for fixed dose irradiations and incident angle measurements using electron and photon beams where also achieved.Main results.The beam nominal energy was found to have a significant impact on the shapes of the angular calibration curves. This can be linked to the electron energy spectrum dependency of the Cerenkov emission cone. Irradiation angle measurements exhibit an absolute mean error of 1.86° and 1.02° at 6 and 18 MV, respectively. Similar results were obtained with electron beams and the absolute mean error reaches 1.97°, 1.66°, 1.45° and 0.95° at 9, 12, 16 and 20 MeV, respectively. Reducing the numerical aperture of the Cerenkov probe leads to an increased angular dependency for the lowest energy while no major changes were observed at higher energy. This allowed irradiation angle measurements at 6 MeV with a mean absolute error of 4.82°.Significance.The detector offers promising perspectives as a potential tool for future quality assurance applications in radiotherapy, especially for stereotactic radiosurgery (SRS), magnetic resonance image-guided radiotherapy (MRgRT) and brachytherapy applications.


Assuntos
Radiometria , Contagem de Cintilação , Calibragem , Elétrons , Fibras Ópticas , Radiometria/métodos , Contagem de Cintilação/métodos
4.
Med Phys ; 48(11): 7399-7409, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34528283

RESUMO

PURPOSE: To present an x-ray tube system capable of in vitro ultrahigh dose-rate (UHDR) irradiation of small < 0.3 mm samples and to characterize it by means of a plastic scintillation detector (PSD). METHODS AND MATERIALS: A conventional x-ray tube was modified for the delivery of short UHDR irradiations. A beam shutter system with a sample holder was designed and installed in a close proximity of an x-ray tube window to enable <1 s irradiations at UHDR. The dosimetry was performed with a small 0.5-mm long 0.5-mm in diameter PSD irradiated with 80, 100, and 120 kVp beams and beam currents of 1-37.5 mA. The PSD signal was recorded at frame rates of 20 and 50 fps for shutter exposure between 100 and 1125 ms. Irradiation reproducibility was studied with the PSD. The x-ray tube irradiation setup was modeled with Monte Carlo (MC) and dose on a surface of a phantom was also measured with films. The effect of dose delivery uncertainty to 300-µm spheroids due to positioning and spheroid size was evaluated. RESULTS: MC simulations showed good agreement with PSD measurements acquired at both frame rates of 20 and 50 fps in terms of beam temporal profile. PSD-measured dose exhibited excellent linearity as a function of instantaneous dose rate from 3.1 to 118.0 Gy/s as well as shutter exposure time from 100 and 1125 ms for all investigated beam energies. PSD absorbed dose for the 80, 100, and 120 kVp beams agreed with MC simulations to within 5%. The total delivered doses ranged from 0.4 Gy for a 1-mA, 80 kVp beam, and 100 ms shutter exposure to 166.9 Gy for a 37.5-mA, 80 kVp beam, and a 1125 ms exposure. PSD irradiation reproducibility was < 0.5%. Simulated and measured dose fall off agreed and it was steep along the axis of the shutter slit (1%/0.1 mm) and with depth (2%/0.1 mm at 1-mm depth). Spheroid positioning uncertainty of 300 µm resulted in dose difference of < 3% for x and y shifts but up to 7% uncertainty for a z-shift parallel to the beam axis. A 16% difference in spheroid size resulted in <5% dose difference in spheroid absorbed dose. CONCLUSIONS: We have presented a cost-effective x-ray tube-based system with a beam shutter designed for in vitro UHDR delivery and reaching dose rates of up to 118.0 Gy/s. The described shutter system can be easily implemented at other institutions, which might enable new researchers to investigate the radiobiology of UHDR irradiations in vitro.


Assuntos
Radiometria , Método de Monte Carlo , Imagens de Fantasmas , Reprodutibilidade dos Testes , Raios X
5.
Opt Express ; 27(16): 22983-22993, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510583

RESUMO

The physical porosity ${\Phi}$Φ of a porous material determines most of its properties. Although the optical porosity ${\Phi} _{\textrm {opt}}$Φopt can be measured, relating this quantity to ${\Phi}$Φ remains a challenge. Here we derive relationships between the optical porosity, the effective refractive index $n_{\textrm {eff}}$neff and the physical porosity of weakly absorbing porous media. It introduces the absorption enhancement parameter ${B}$B, which quantifies the asymmetry of photon path lengths between the solid material and the pores and can be derived from the absorption coefficient $\mu _a$µa of the material. Hence ${\Phi}$Φ can be derived from combined measurements of $n_{\textrm {eff}}$neff and $\mu _a$µa. The theory is validated against laboratory measurements and numerical experiments, thus solving a long-standing issue in optical porosimetry. This suggests that optical measurements can be used to estimate physical porosity with an accuracy better than 10$\%$%.

6.
Appl Opt ; 54(10): 2594-605, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25967164

RESUMO

The development of a novel broadband and tunable optical parametric generator (OPG) is presented. The OPG properties are studied numerically and experimentally in order to optimize the generator's use in a broadband spectroscopic LIDAR operating in the short and mid-infrared. This paper discusses trade-offs to be made on the properties of the pump, crystal, and seeding signal in order to optimize the pulse spectral density and divergence while enabling energy scaling. A seed with a large spectral bandwidth is shown to enhance the pulse-to-pulse stability and optimize the pulse spectral density. A numerical model shows excellent agreement with output power measurements; the model predicts that a pump having a large number of longitudinal modes improves conversion efficiency and pulse stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...