Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 8(10): R216, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17927810

RESUMO

BACKGROUND: Mutations in genes encoding ribosomal proteins (RPs) have been shown to cause an array of cellular and developmental defects in a variety of organisms. In Drosophila melanogaster, disruption of RP genes can result in the 'Minute' syndrome of dominant, haploinsufficient phenotypes, which include prolonged development, short and thin bristles, and poor fertility and viability. While more than 50 Minute loci have been defined genetically, only 15 have so far been characterized molecularly and shown to correspond to RP genes. RESULTS: We combined bioinformatic and genetic approaches to conduct a systematic analysis of the relationship between RP genes and Minute loci. First, we identified 88 genes encoding 79 different cytoplasmic RPs (CRPs) and 75 genes encoding distinct mitochondrial RPs (MRPs). Interestingly, nine CRP genes are present as duplicates and, while all appear to be functional, one member of each gene pair has relatively limited expression. Next, we defined 65 discrete Minute loci by genetic criteria. Of these, 64 correspond to, or very likely correspond to, CRP genes; the single non-CRP-encoding Minute gene encodes a translation initiation factor subunit. Significantly, MRP genes and more than 20 CRP genes do not correspond to Minute loci. CONCLUSION: This work answers a longstanding question about the molecular nature of Minute loci and suggests that Minute phenotypes arise from suboptimal protein synthesis resulting from reduced levels of cytoribosomes. Furthermore, by identifying the majority of haplolethal and haplosterile loci at the molecular level, our data will directly benefit efforts to attain complete deletion coverage of the D. melanogaster genome.


Assuntos
Drosophila melanogaster/genética , Evolução Molecular , Mutação/genética , Fenótipo , Proteínas Ribossômicas/genética , Animais , Biologia Computacional , Citoplasma/metabolismo , Genes Duplicados/genética
2.
Biochem Biophys Res Commun ; 359(3): 784-9, 2007 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-17560546

RESUMO

Lysine methylation has important functions in biological processes that range from heterochromatin formation to transcription regulation. Here, we demonstrate that Drosophila dSet2 encodes a developmentally essential histone H3 lysine 36 (K36) methyltransferase. Larvae subjected to RNA interference-mediated (RNAi) suppression of dSet2 lack dSet2 expression and H3-K36 methylation, indicating that dSet2 is the sole enzyme responsible for this modification in Drosophila melanogaster. dSet2 RNAi blocks puparium formation and adult development, and causes partial (blister) separation of the dorsal and ventral wing epithelia, defects suggesting a failure of the ecdysone-controlled genetic program. A transheterozygous EcR null mutation/dSet2 RNAi combination produces a complete (balloon) separation of the wing surfaces, revealing a genetic interaction between EcR and dSet2. Using immunoprecipitation, we demonstrate that dSet2 associates with the hyperphosphorylated form of RNA polymerase II (RNAPII).


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Histona-Lisina N-Metiltransferase/genética , Lisina/genética , Metilação , Fosforilação , Ligação Proteica , RNA Polimerase II/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
3.
Nucleic Acids Res ; 34(16): 4609-21, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16963494

RESUMO

Mammalian G9a is a histone H3 Lys-9 (H3-K9) methyltransferase localized in euchromatin and acts as a co-regulator for specific transcription factors. G9a is required for proper development in mammals as g9a-/g9a- mice show growth retardation and early lethality. Here we describe the cloning, the biochemical and genetical analyses of the Drosophila homolog dG9a. We show that dG9a shares the structural organization of mammalian G9a, and that it is a multi-catalytic histone methyltransferase with specificity not only for lysines 9 and 27 on H3 but also for H4. Surprisingly, it is not the H4-K20 residue that is the target for this methylation. Spatiotemporal expression analyses reveal that dG9a is abundantly expressed in the gonads of both sexes, with no detectable expression in gonadectomized adults. In addition we find a low but clearly observable level of dG9a transcript in developing embryos, larvae and pupae. Genetic and RNAi experiments reveal that dG9a is involved in ecdysone regulatory pathways.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Histona-Lisina N-Metiltransferase/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Eucromatina/enzimologia , Expressão Gênica , Genes de Insetos , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/análise , Histona-Lisina N-Metiltransferase/genética , Camundongos , Dados de Sequência Molecular , Proteínas Metiltransferases , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
4.
Hereditas ; 143(2006): 177-88, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17362353

RESUMO

We have identified dEset, the fly homolog of human SETDB1 and mouse ESET histone lysine methyltransferases (HKMTases) that methylates the lysine 9 residue of histone 3 (H3-K9) and negatively regulates transcription of target genes. By using spatio-temporal RNA interference we show that dEset is required at several stages of development coinciding with ecdysone pulses, possibly as a repressor of transcription of target genes. Several interacting partners, for example USP, spire, and cut up were identified in a yeast two-hybrid screen. The spatio-temporal expression profiles of dEset and its potential partners suggest that they may act together or even in a larger complex.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/crescimento & desenvolvimento , Histona-Lisina N-Metiltransferase/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Drosophila/enzimologia , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Masculino , Camundongos , Modelos Genéticos , Dados de Sequência Molecular , Fenótipo , Proteínas Metiltransferases/genética , Estrutura Terciária de Proteína , Interferência de RNA , Técnicas do Sistema de Duplo-Híbrido
5.
Gene ; 320: 41-8, 2003 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-14597387

RESUMO

The Drosophila Minutes are haploinsufficient mutations that are defective in ribosomal protein (rp) production, resulting in short, thin bristles, delayed development and recessive lethality. In a Minute fly, the amount of rp gene messenger RNA (mRNA) is reduced to >or=50% of the normal amount of gene product, and becomes rate limiting for ribosome biogenesis, cell proliferation and growth. Haploinsufficiency increases the vulnerability to complete loss of gene function (homozygous null state) if hit by a second mutation. Because of the homozygous lethality, it has only been possible to study the effects of Minute mutations in heterozygous animals. To be able to study the consequences of a loss-of-function of an rp gene (0%>mRNA<50%) in developing and differentiated cells we used heritable RNA interference (RNAi) in combination with the yeast GAL4/UAS binary system to spatiotemporally knock down the ribosomal protein L14 (RpL14) gene. We show, at the RNA and phenotypic levels, that RNAi efficiently reduces RpL14 gene expression throughout development, causing lethality and distinct and dramatic somatic anomalies in both developing and differentiated cells.


Assuntos
Anormalidades Múltiplas/genética , Drosophila/genética , Interferência de RNA , Proteínas Ribossômicas/genética , Animais , Cruzamentos Genéticos , Drosophila/crescimento & desenvolvimento , Olho/inervação , Olho/metabolismo , Olho/ultraestrutura , Anormalidades do Olho/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Letais/genética , Masculino , Microscopia Eletrônica de Varredura , Mutação , Malformações do Sistema Nervoso/genética , Fenótipo
6.
Hereditas ; 138(1): 73-9, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12830988

RESUMO

Small nucleolar RNAs (snoRNAs) are involved in precursor ribosomal RNA (pre-rRNA) processing and rRNA base modifications (2'-O-ribose methylation and pseudouridylation). Their genomic organization show great flexibility: some are individually or polycistronically transcribed, while others are encoded within introns of other genes. Here, we present an evolutionary analysis of the U49 gene in seven species. In all species analyzed, U49 contains the typical hallmarks of C and D box motifs, and a conserved 12-15 nt sequence complementary to rRNA that define them as homologs. In mouse, human, and Drosophila U49 is found encoded within introns of different genes, and in plants it is transcribed polycistronically from four different locations. In addition, U49 has two copies in two different introns of the RpL14 gene in Drosophila. The results indicate a substantial degree of duplication and translocation of the U49 gene in evolution. In light of its variable organization we discuss which of the two proposed mechanisms of rearrangement has acted upon the U49 snoRNA gene: chromosomal duplication or transposition through an RNA intermediate.


Assuntos
Evolução Molecular , Genes de Plantas , Íntrons/genética , Família Multigênica , RNA Nucleolar Pequeno/genética , Animais , Sequência de Bases , Nucléolo Celular/fisiologia , Mapeamento Cromossômico , Drosophila melanogaster/genética , Humanos , Metilação , Camundongos , Dados de Sequência Molecular , RNA de Plantas/química , RNA de Plantas/genética , RNA Ribossômico/química , RNA Ribossômico/genética , Proteínas Ribossômicas/genética , Homologia de Sequência do Ácido Nucleico
7.
Genes Dev ; 17(11): 1402-14, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12782658

RESUMO

NELF and DSIF collaborate to inhibit elongation by RNA polymerase IIa in extracts from human cells. A multifaceted approach was taken to investigate the potential role of these factors in promoter proximal pausing on the hsp70 gene in Drosophila. Immunodepletion of DSIF from a Drosophila nuclear extract reduced the level of polymerase that paused in the promoter proximal region of hsp70. Depletion of one NELF subunit in salivary glands using RNA interference also reduced the level of paused polymerase. In vivo protein-DNA cross-linking showed that NELF and DSIF associate with the promoter region before heat shock. Immunofluorescence analysis of polytene chromosomes corroborated the cross-linking result and showed that NELF, DSIF, and RNA polymerase IIa colocalize at the hsp70 genes, small heat shock genes, and many other chromosomal locations. Finally, following heat shock induction, DSIF and polymerase but not NELF were strongly recruited to chromosomal puffs harboring the hsp70 genes. We propose that NELF and DSIF cause polymerase to pause in the promoter proximal region of hsp70. The transcriptional activator, HSF, might cause NELF to dissociate from the elongation complex. DSIF continues to associate with the elongation complex and could serve a positive role in elongation.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas Nucleares/genética , Proteínas de Ligação a RNA/genética , Proteínas Repressoras , Fatores de Transcrição/genética , Animais , Sequência de Bases , Núcleo Celular/genética , Núcleo Celular/fisiologia , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriologia , Embrião não Mamífero/fisiologia , Deleção de Genes , Proteínas de Choque Térmico/genética , Humanos , Proteínas Nucleares/metabolismo , Subunidades Proteicas/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/metabolismo , Glândulas Salivares/enzimologia , Glândulas Salivares/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Elongação da Transcrição
8.
Hereditas ; 139(2): 143-50, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-15061815

RESUMO

The ribosomal protein RpL14 gene has been characterized in several species, including, human, rat and fruit fly. Haploinsufficiency for the gene causes the Minute phenotype in Drosophila, and it has been proposed as a regulator in the tumorigenic pathway in human. Several features concerning the gene structure have been studied, and some of these differ between human/rat and Drosophila. To address functional and evolutionary questions about these differences we have isolated and sequenced a cDNA and a genomic clone covering the RpL14 gene from the pufferfish Takifugu rubripes (Fugu). The Fugu RpL14 gene is approximately 2 Kb, with 5 introns, and encodes a protein of 137 amino acids. The protein contains a KOW-motif and a nuclear localization signal, which are conserved among a wide range of RPL14 proteins. On the other hand, a variable amino acid (alanine) repeat observed in human is missing in Takifugu rubripes, and the protein is shorter than its mammalian counterparts. Compared with human, the RpL14 gene in Fugu contains introns localized at identical positions in the gene, and most of them are shorter. A comparison of the RpL14 gene structure from a broad range of organisms indicates that both loss and gain of introns have occurred during the evolution of the gene.


Assuntos
Proteínas/genética , Takifugu/genética , Sequência de Aminoácidos , Sequência de Bases , DNA , Dados de Sequência Molecular , Proteínas/química , Homologia de Sequência de Aminoácidos
9.
Gene ; 294(1-2): 147-56, 2002 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-12234676

RESUMO

Ribosomal protein S3 (RPS3) is a multifunctional ribosomal protein: it is a structural and functional component of the ribosome, and also a DNA repair enzyme involved in the DNA base excision repair pathway. Here we cloned and characterized the genomic organization of the ribosomal protein S3 gene (RpS3) homolog in Drosophila virilis. We then compared gene structure and protein sequences of RpS3 from vertebrates, invertebrates, and plants. These comparisons revealed that RpS3 genes from plants to mammals have highly conserved coding and amino acid sequences, and also protein size. Further comparisons of the protein sequences show that important domains are well conserved in both localization and sequence. In contrast, comparison of gene size and organization reveals differing patterns and levels of conservation. Whereas invertebrate RpS3 genes are small in size and gene organization is variable (from zero to four introns), vertebrates have a considerably larger (but variable) gene size and a uniform gene organization. The larger gene size in vertebrates is due to increased number and expansion of introns. Although the plant RpS3 genes are relatively small ( approximately 1.8 kb), their organization resembles that seen in vertebrates. The high conservation through different phyla may suggest that RPS3 might be under great functional constraints, both in its capacity as a component of the ribosome and as a component of a DNA repair system. Finally, electrophoretic mobility shift assays indicate that an upstream element binds a nuclear protein(s).


Assuntos
Drosophila/genética , Genes de Insetos/genética , Filogenia , Proteínas Ribossômicas/genética , Sequência de Aminoácidos , Animais , Northern Blotting , Clonagem Molecular , DNA/química , DNA/genética , DNA/metabolismo , Drosophila/crescimento & desenvolvimento , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Ensaio de Desvio de Mobilidade Eletroforética , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Íntrons , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA/genética , RNA/metabolismo , Mapeamento por Restrição , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
11.
Gene ; 282(1-2): 199-206, 2002 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-11814692

RESUMO

In Drosophila melanogaster, the apparently unrelated genes anon-66Da, RpL14, and anon-66Db (from telomere to centromere) are located on a 5547 bp genomic fragment on chromosome arm 3L at cytological position 66D8. The three genes are tightly linked, and flanked by two relatively large genes with unknown function. We have taken a comparative genomic approach to investigate the evolutionary history of the three genes. To this end we isolated a Drosophila virilis 7.3 kb genomic fragment which is homologous to a 5.5 kb genomic region of D. melanogaster. Both fragments map to Muller's element D, namely to section 66D in D. melanogaster and to section 32E in D. virilis, and harbor the genes anon-66Da, RpL14, and anon-66Db. We demonstrate that the three genes exhibit a high conservation of gene topography in general and in detail. While most introns and intergenic regions reveal sequence divergences, there are, however, a number of interspersed conserved sequence motifs. In particular, two introns of the RpL14 gene contain a short, highly conserved 60 nt long sequence located at corresponding positions. This sequence represents a novel Drosophila small nucleolar RNA, which is homologous to human U49. Whereas DNA flanking the three genes shows no significant interspecies homologies, the 3'-flanking region in D. virilis contains sequences from the transposable element Penelope. The Penelope family of transposable elements has been shown to promote chromosomal rearrangements in the D. virilis species group. The presence of Penelope sequences in the D. virilis 7.3 kb genomic fragment may be indicative for a transposon-induced event of transposition which did not yet scramble the order of the three genes but led to the breakdown of sequence identity of the flanking DNA.


Assuntos
Drosophila/genética , Genes de Insetos/genética , Proteínas de Ligação a RNA , Sequência de Aminoácidos , Animais , Northern Blotting , DNA/química , DNA/genética , DNA/isolamento & purificação , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Ordem dos Genes , Dados de Sequência Molecular , RNA/genética , RNA/metabolismo , Proteínas Ribossômicas/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Fatores de Transcrição
12.
Wilehm Roux Arch Dev Biol ; 193(1): 48-51, 1984 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28305496

RESUMO

Transferring the temperature sensitive mutantl(1)su(f) ts67g from 25° C to 30° C before or early in the third larval instar blocks the increase in the ecdysterone titer that normally occurs at the end of the larval period. Feeding exogenous ecdysterone to these hormone-deficient larvae results in the formation of pseudopupae. The mutant was used to study ecdysterone-inducible functions in late larval salivary glands by preparing three animal samples with different hormone titers: the titer was low in one sample because of an earlier temperature shift, high in a second sample because the larvae were subsequently transferred to ecdysterone-supplemented food, and also high in a third sample that was kept at 25°C, providing a control for normal development. The effect of the different hormone conditions was studied by35S-methionine labeling of the salivary gland proteins during the larval to prepupal transition and the prepupal period. The results indicate that synthesis of several of the proteins normally appearing during the transition and prepupal period is induced by exogenous ecdysterone.

13.
Wilehm Roux Arch Dev Biol ; 190(6): 308-312, 1981 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28305289

RESUMO

The l(1)su(f)ts67g mutation has been shown to suppress the developmentally regulated expression of glue protein genes at 30°C. Transferring mutant larvae to the restrictive temperature before the end of the second larval instar results in the absence or extreme reduction of glue protein synthesis while general protein synthesis is unaffected. At the same time, the three glue protein correlated chromosomal regions 3C, 25B, and 68C continue to show prominent puffs. The results suggest that the mutation may be affecting the processing or translatability of specific mRNAs rather than the translational machinery itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...