Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1316633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380088

RESUMO

Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type. In moraine substrates, Actinomycetota and Cercozoa were the most abundant bacterial and eukaryotic phyla, whereas on gneiss, granite and marble substrates, Cyanobacteriota and Metazoa were the dominant bacterial and eukaryotic taxa. However, at lower taxonomic level, a distinct differentiation was observed within the Cyanobacteriota phylum depending on substrate type, with granite being dominated by the Nostocaceae family and marble by the Chroococcidiopsaceae family. Surprisingly, metazoans were relatively abundant according to the 18S rRNA dataset, even in samples from the most arid sites, such as moraines in Austkampane and Widerøefjellet ("Dry Valley"). Overall, our study shows that different substrate types support distinct microbial communities, and that mineral soil diversity is a major determinant of terrestrial microbial diversity in inland Antarctic nunataks and valleys.

2.
Front Microbiol ; 10: 242, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828325

RESUMO

Although Antarctica was once believed to be a sterile environment, it is now clear that the microbial communities inhabiting the Antarctic continent are surprisingly diverse. Until the beginning of the new millennium, little was known about the most abundant inhabitants of the continent: prokaryotes. From then on, however, the rising use of deep sequencing techniques has led to a better understanding of the Antarctic prokaryote diversity and provided insights in the composition of prokaryotic communities in different Antarctic environments. Although these cultivation-independent approaches can produce millions of sequences, linking these data to organisms is hindered by several problems. The largest difficulty is the lack of biological information on large parts of the microbial tree of life, arising from the fact that most microbial diversity on Earth has never been characterized in laboratory cultures. These unknown prokaryotes, also known as microbial dark matter, have been dominantly detected in all major environments on our planet. Laboratory cultures provide access to the complete genome and the means to experimentally verify genomic predictions and metabolic functions and to provide evidence of horizontal gene transfer. Without such well-documented reference data, microbial dark matter will remain a major blind spot in deep sequencing studies. Here, we review our current understanding of prokaryotic communities in Antarctic ice-free soils based on cultivation-dependent and cultivation-independent approaches. We discuss advantages and disadvantages of both approaches and how these strategies may be combined synergistically to strengthen each other and allow a more profound understanding of prokaryotic life on the frozen continent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...