Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Neurol ; 2023: 8552180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575401

RESUMO

Introduction: Suicide is one of the leading causes of death across different age groups. The persistence of suicidal ideation and the progression of suicidal ideations to action could be related to impulsivity, the tendency to act on urges with low temporal latency, and little forethought. Quantifying impulsivity could thus help suicidality estimation and risk assessments in ideation-to-action suicidality frameworks. Methods: To model suicidality with impulsivity quantification, we obtained questionnaires, behavioral tests, heart rate variability (HRV), and resting state functional magnetic resonance imaging measurements from 34 participants with mood disorders. The participants were categorized into three suicidality groups based on their Mini-International Neuropsychiatric Interview: none, low, and moderate to severe. Results: Questionnaire and HRV-based impulsivity measures were significantly different between the suicidality groups with higher subscales of impulsivity associated with higher suicidality. A multimodal system to characterize impulsivity objectively resulted in a classification accuracy of 96.77% in the three-class suicidality group prediction task. Conclusions: This study elucidates the relative sensitivity of various impulsivity measures in differentiating participants with suicidality and demonstrates suicidality prediction with high accuracy using a multimodal objective impulsivity characterization in participants with mood disorders.


Assuntos
Ideação Suicida , Suicídio , Humanos , Suicídio/psicologia , Saúde Mental , Comportamento Impulsivo/fisiologia , Transtornos do Humor
2.
IEEE J Biomed Health Inform ; 27(7): 3246-3257, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037254

RESUMO

Mobile sensing-based modeling of behavioral changes could predict an oncoming psychotic relapse in schizophrenia patients for timely interventions. Deep learning models could complement existing non-deep learning models for relapse prediction by modeling the latent behavioral features relevant to prediction. However, given the inter-individual behavioral differences, model personalization might be required. In this work, we propose RelapsePredNet, a Long Short-Term Memory (LSTM) neural network-based model for relapse prediction. The model is personalized for a particular patient by using data from patients most similar to the given patient based on their demographics or baseline mental health scores. RelapsePredNet was compared with a deep learning-based anomaly detection model for relapse prediction. Additionally, we investigated if RelapsePredNet could complement ClusterRFModel (a random forest model leveraging clustering and template features proposed in prior work) in a fusion model. The CrossCheck dataset consisting of continuous mobile sensing data obtained from 63 schizophrenia patients, each monitored for up to a year, was used for our evaluations. RelapsePredNet outperformed the deep learning-based anomaly detection for relapse prediction with an F2 score of 0.21 and 0.52 in the full test set and the Relapse Test Set (consisting of data from patients who have had relapse only), respectively, representing a 29.4% and 38.8% improvement. Patients' social functioning scale (SFS) score was found to be the best personalization metric to define patient similarity. RelapsePredNet complemented the ClusterRFModel as it improved the F2 score by 26.1% with a fusion model, resulting in an F2 score of 0.30 in the full test set.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico , Redes Neurais de Computação , Recidiva
3.
JMIR Mhealth Uhealth ; 10(4): e31006, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404256

RESUMO

BACKGROUND: Behavioral representations obtained from mobile sensing data can be helpful for the prediction of an oncoming psychotic relapse in patients with schizophrenia and the delivery of timely interventions to mitigate such relapse. OBJECTIVE: In this study, we aim to develop clustering models to obtain behavioral representations from continuous multimodal mobile sensing data for relapse prediction tasks. The identified clusters can represent different routine behavioral trends related to daily living of patients and atypical behavioral trends associated with impending relapse. METHODS: We used the mobile sensing data obtained from the CrossCheck project for our analysis. Continuous data from six different mobile sensing-based modalities (ambient light, sound, conversation, acceleration, etc) obtained from 63 patients with schizophrenia, each monitored for up to a year, were used for the clustering models and relapse prediction evaluation. Two clustering models, Gaussian mixture model (GMM) and partition around medoids (PAM), were used to obtain behavioral representations from the mobile sensing data. These models have different notions of similarity between behaviors as represented by the mobile sensing data, and thus, provide different behavioral characterizations. The features obtained from the clustering models were used to train and evaluate a personalized relapse prediction model using balanced random forest. The personalization was performed by identifying optimal features for a given patient based on a personalization subset consisting of other patients of similar age. RESULTS: The clusters identified using the GMM and PAM models were found to represent different behavioral patterns (such as clusters representing sedentary days, active days but with low communication, etc). Although GMM-based models better characterized routine behaviors by discovering dense clusters with low cluster spread, some other identified clusters had a larger cluster spread, likely indicating heterogeneous behavioral characterizations. On the other hand, PAM model-based clusters had lower variability of cluster spread, indicating more homogeneous behavioral characterization in the obtained clusters. Significant changes near the relapse periods were observed in the obtained behavioral representation features from the clustering models. The clustering model-based features, together with other features characterizing the mobile sensing data, resulted in an F2 score of 0.23 for the relapse prediction task in a leave-one-patient-out evaluation setting. The obtained F2 score was significantly higher than that of a random classification baseline with an average F2 score of 0.042. CONCLUSIONS: Mobile sensing can capture behavioral trends using different sensing modalities. Clustering of the daily mobile sensing data may help discover routine and atypical behavioral trends. In this study, we used GMM-based and PAM-based cluster models to obtain behavioral trends in patients with schizophrenia. The features derived from the cluster models were found to be predictive for detecting an oncoming psychotic relapse. Such relapse prediction models can be helpful in enabling timely interventions.


Assuntos
Esquizofrenia , Análise por Conglomerados , Humanos , Recidiva , Esquizofrenia/diagnóstico , Esquizofrenia/terapia
4.
BMC Med Inform Decis Mak ; 20(Suppl 12): 327, 2020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357222

RESUMO

BACKGROUND: Sudden unexpected death in epilepsy (SUDEP) is a leading cause of premature death in patients with epilepsy. If timely assessment of SUDEP risk can be made, early interventions for optimized treatments might be provided. One of the biomarkers being investigated for SUDEP risk assessment is postictal generalized EEG suppression [postictal generalized EEG suppression (PGES)]. For example, prolonged PGES has been found to be associated with a higher risk for SUDEP. Accurate characterization of PGES requires correct identification of the end of PGES, which is often complicated due to signal noise and artifacts, and has been reported to be a difficult task even for trained clinical professionals. In this work we present a method for automatic detection of the end of PGES using multi-channel EEG recordings, thus enabling the downstream task of SUDEP risk assessment by PGES characterization. METHODS: We address the detection of the end of PGES as a classification problem. Given a short EEG snippet, a trained model classifies whether it consists of the end of PGES or not. Scalp EEG recordings from a total of 134 patients with epilepsy are used for training a random forest based classification model. Various time-series based features are used to characterize the EEG signal for the classification task. The features that we have used are computationally inexpensive, making it suitable for real-time implementations and low-power solutions. The reference labels for classification are based on annotations by trained clinicians identifying the end of PGES in an EEG recording. RESULTS: We evaluated our classification model on an independent test dataset from 34 epileptic patients and obtained an AUreceiver operating characteristic (ROC) (area under the curve) of 0.84. We found that inclusion of multiple EEG channels is important for better classification results, possibly owing to the generalized nature of PGES. Of among the channels included in our analysis, the central EEG channels were found to provide the best discriminative representation for the detection of the end of PGES. CONCLUSION: Accurate detection of the end of PGES is important for PGES characterization and SUDEP risk assessment. In this work, we showed that it is feasible to automatically detect the end of PGES-otherwise difficult to detect due to EEG noise and artifacts-using time-series features derived from multi-channel EEG recordings. In future work, we will explore deep learning based models for improved detection and investigate the downstream task of PGES characterization for SUDEP risk assessment.


Assuntos
Epilepsia , Convulsões , Eletroencefalografia , Humanos , Convulsões/diagnóstico
5.
Biomed Res Int ; 2017: 4593956, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133607

RESUMO

A novel methodology, the double layer methodology (DLM), for modeling an individual's lifestyle and its relationships with health indicators is presented. The DLM is applied to model behavioral routines emerging from self-reports of daily diet and activities, annotated by 21 healthy subjects over 2 weeks. Unsupervised clustering on the first layer of the DLM separated our population into two groups. Using eigendecomposition techniques on the second layer of the DLM, we could find activity and diet routines, predict behaviors in a portion of the day (with an accuracy of 88% for diet and 66% for activity), determine between day and between individual similarities, and detect individual's belonging to a group based on behavior (with an accuracy up to 64%). We found that clustering based on health indicators was mapped back into activity behaviors, but not into diet behaviors. In addition, we showed the limitations of eigendecomposition for lifestyle applications, in particular when applied to noisy and sparse behavioral data such as dietary information. Finally, we proposed the use of the DLM for supporting adaptive and personalized recommender systems for stimulating behavior change.


Assuntos
Indicadores Básicos de Saúde , Estilo de Vida , Modelos Teóricos , Adulto , Comportamento , Análise por Conglomerados , Demografia , Dieta , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
6.
IEEE J Biomed Health Inform ; 20(1): 100-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25546867

RESUMO

The temperature of preterm neonates must be maintained within a narrow window to ensure their survival. Continuously measuring their core temperature provides an optimal means of monitoring their thermoregulation and their response to environmental changes. However, existing methods of measuring core temperature can be very obtrusive, such as rectal probes, or inaccurate/lagging, such as skin temperature sensors and spot-checks using tympanic temperature sensors. This study investigates an unobtrusive method of measuring brain temperature continuously using an embedded zero-heat-flux (ZHF) sensor matrix placed under the head of the neonate. The measured temperature profile is used to segment areas of motion and incorrect positioning, where the neonate's head is not above the sensors. We compare our measurements during low motion/stable periods to esophageal temperatures for 12 preterm neonates, measured for an average of 5 h per neonate. The method we propose shows good correlation with the reference temperature for most of the neonates. The unobtrusive embedding of the matrix in the neonate's environment poses no harm or disturbance to the care work-flow, while measuring core temperature. To address the effect of motion on the ZHF measurements in the current embodiment, we recommend a more ergonomic embedding ensuring the sensors are continuously placed under the neonate's head.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Termômetros , Termometria/instrumentação , Termometria/métodos , Eletrônica Médica , Desenho de Equipamento , Esôfago/fisiologia , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Terapia Intensiva Neonatal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...